[转帖]什么是ClickHouse?
什么是ClickHouse?
ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS)。
在传统的行式数据库系统中,数据按如下顺序存储:
Row | WatchID | JavaEnable | Title | GoodEvent | EventTime |
---|---|---|---|---|---|
#0 | 89354350662 | 1 | Investor Relations | 1 | 2016-05-18 05:19:20 |
#1 | 90329509958 | 0 | Contact us | 1 | 2016-05-18 08:10:20 |
#2 | 89953706054 | 1 | Mission | 1 | 2016-05-18 07:38:00 |
#N | … | … | … | … | … |
处于同一行中的数据总是被物理的存储在一起。
常见的行式数据库系统有:MySQL
、Postgres
和MS SQL Server
。
在列式数据库系统中,数据按如下的顺序存储:
Row: | #0 | #1 | #2 | #N |
---|---|---|---|---|
WatchID: | 89354350662 | 90329509958 | 89953706054 | … |
JavaEnable: | 1 | 0 | 1 | … |
Title: | Investor Relations | Contact us | Mission | … |
GoodEvent: | 1 | 1 | 1 | … |
EventTime: | 2016-05-18 05:19:20 | 2016-05-18 08:10:20 | 2016-05-18 07:38:00 | … |
这些示例只显示了数据的排列顺序。来自不同列的值被单独存储,来自同一列的数据被存储在一起。
常见的列式数据库有: Vertica、 Paraccel (Actian Matrix,Amazon Redshift)、 Sybase IQ、 Exasol、 Infobright、 InfiniDB、 MonetDB (VectorWise, Actian Vector)、 LucidDB、 SAP HANA、 Google Dremel、 Google PowerDrill、 Druid、 kdb+。
不同的数据存储方式适用不同的业务场景,数据访问的场景包括:进行了何种查询、多久查询一次以及各类查询的比例;每种类型的查询(行、列和字节)读取多少数据;读取数据和更新之间的关系;使用的数据集大小以及如何使用本地的数据集;是否使用事务,以及它们是如何进行隔离的;数据的复制机制与数据的完整性要求;每种类型的查询要求的延迟与吞吐量等等。
系统负载越高,依据使用场景进行定制化就越重要,并且定制将会变的越精细。没有一个系统能够同时适用所有不同的业务场景。如果系统适用于广泛的场景,在负载高的情况下,要兼顾所有的场景,那么将不得不做出选择。是要平衡还是要效率?
OLAP场景的关键特征
- 绝大多数是读请求
- 数据以相当大的批次(> 1000行)更新,而不是单行更新;或者根本没有更新。
- 已添加到数据库的数据不能修改。
- 对于读取,从数据库中提取相当多的行,但只提取列的一小部分。
- 宽表,即每个表包含着大量的列
- 查询相对较少(通常每台服务器每秒查询数百次或更少)
- 对于简单查询,允许延迟大约50毫秒
- 列中的数据相对较小:数字和短字符串(例如,每个URL 60个字节)
- 处理单个查询时需要高吞吐量(每台服务器每秒可达数十亿行)
- 事务不是必须的
- 对数据一致性要求低
- 每个查询有一个大表。除了他以外,其他的都很小。
- 查询结果明显小于源数据。换句话说,数据经过过滤或聚合,因此结果适合于单个服务器的RAM中
很容易可以看出,OLAP场景与其他通常业务场景(例如,OLTP或K/V)有很大的不同, 因此想要使用OLTP或Key-Value数据库去高效的处理分析查询场景,并不是非常完美的适用方案。例如,使用OLAP数据库去处理分析请求通常要优于使用MongoDB或Redis去处理分析请求。
列式数据库更适合OLAP场景的原因
列式数据库更适合于OLAP场景(对于大多数查询而言,处理速度至少提高了100倍),下面详细解释了原因(通过图片更有利于直观理解):
行式
列式
看到差别了么?下面将详细介绍为什么会发生这种情况。
输入/输出
- 针对分析类查询,通常只需要读取表的一小部分列。在列式数据库中你可以只读取你需要的数据。例如,如果只需要读取100列中的5列,这将帮助你最少减少20倍的I/O消耗。
- 由于数据总是打包成批量读取的,所以压缩是非常容易的。同时数据按列分别存储这也更容易压缩。这进一步降低了I/O的体积。
- 由于I/O的降低,这将帮助更多的数据被系统缓存。
例如,查询«统计每个广告平台的记录数量»需要读取«广告平台ID»这一列,它在未压缩的情况下需要1个字节进行存储。如果大部分流量不是来自广告平台,那么这一列至少可以以十倍的压缩率被压缩。当采用快速压缩算法,它的解压速度最少在十亿字节(未压缩数据)每秒。换句话说,这个查询可以在单个服务器上以每秒大约几十亿行的速度进行处理。这实际上是当前实现的速度。
CPU
由于执行一个查询需要处理大量的行,因此在整个向量上执行所有操作将比在每一行上执行所有操作更加高效。同时这将有助于实现一个几乎没有调用成本的查询引擎。如果你不这样做,使用任何一个机械硬盘,查询引擎都不可避免的停止CPU进行等待。所以,在数据按列存储并且按列执行是很有意义的。
有两种方法可以做到这一点:
向量引擎:所有的操作都是为向量而不是为单个值编写的。这意味着多个操作之间的不再需要频繁的调用,并且调用的成本基本可以忽略不计。操作代码包含一个优化的内部循环。
代码生成:生成一段代码,包含查询中的所有操作。
这是不应该在一个通用数据库中实现的,因为这在运行简单查询时是没有意义的。但是也有例外,例如,MemSQL使用代码生成来减少处理SQL查询的延迟(只是为了比较,分析型数据库通常需要优化的是吞吐而不是延迟)。
请注意,为了提高CPU效率,查询语言必须是声明型的(SQL或MDX), 或者至少一个向量(J,K)。 查询应该只包含隐式循环,允许进行优化。
[转帖]什么是ClickHouse?的更多相关文章
- nginx负载均衡基于ip_hash的session粘帖
nginx负载均衡基于ip_hash的session粘帖 nginx可以根据客户端IP进行负载均衡,在upstream里设置ip_hash,就可以针对同一个C类地址段中的客户端选择同一个后端服务器,除 ...
- [转帖]网络协议封封封之Panabit配置文档
原帖地址:http://myhat.blog.51cto.com/391263/322378
- [转帖]零投入用panabit享受万元流控设备——搭建篇
原帖地址:http://net.it168.com/a2009/0505/274/000000274918.shtml 你想合理高效的管理内网流量吗?你想针对各个非法网络应用与服务进行合理限制吗?你是 ...
- 3d数学总结帖
3d数学总结帖,以下是对3d学习过程中数学知识的简单总结 角度值和弧度制的互转 Deg2Rad 角度A1转弧度A2 => A2=A1*PI/180 Rad2Deg 弧度A2转换角度A1 => ...
- [转帖]The Lambda Calculus for Absolute Dummies (like myself)
Monday, May 7, 2012 The Lambda Calculus for Absolute Dummies (like myself) If there is one highly ...
- [转帖]FPGA开发工具汇总
原帖:http://blog.chinaaet.com/yocan/p/5100017074 ----------------------------------------------------- ...
- [Android分享] 【转帖】Android ListView的A-Z字母排序和过滤搜索功能
感谢eoe社区的分享 最近看关于Android实现ListView的功能问题,一直都是小伙伴们关心探讨的Android开发问题之一,今天看到有关ListView实现A-Z字母排序和过滤搜索功能 ...
- AxureRP7.0各类交互效果汇总帖(转)
了便于大家参考,我把这段时间发布分享的所有关于AxureRP7.0的原型做了整理. 以下资源均有对应的RP源文件可以下载. 当然 ,其中有部分是需要通过完成解密游戏[攻略]才能得到下载地址或者下载密码 ...
- 未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u010259408]
未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u01025 ...
- 转帖-[教程] Win7精简教程(简易中度)2016年8月-0day
[教程] Win7精简教程(简易中度)2016年8月 0day 发表于 2016-8-19 16:08:41 https://www.itsk.com/thread-370260-1-1.html ...
随机推荐
- P7112 【模板】行列式求值
学<高等代数>第二章的时候过来搜了搜模板,结果真搜到了.于是水一篇题解. 本文部分内容来自<高等代数>. 行列式定义 对于一个 \(n\) 阶行列式 \[A_{n \times ...
- [Python急救站]学生管理系统链接数据库
相信很多人在初学Python的时候,经常最后作业就是完成一个学生管理系统,但是我们来做一个完美的学生管理系统,并且将数据储存到数据库里. 我们先看看我们的数据库怎么设置. 首先呢,我选择用的是SQL ...
- react+echarts出现“There is a chart instance already initialized on the dom.”
写了一个关于echatrs组件,报错dom重复 配置信息从props拿 let chart; useEffect(() => { if (chart) { updateChartView(); ...
- 华为云GaussDB打造最可信的数据库,给世界一个更优选择
近日,第14届中国数据库技术大会(DTCC2023)在北京国际会议中心顺利举行.大会以"数智赋能 共筑未来"为主题,邀请了上百位行业专家,一起探讨新时代下各类型数据库的最新动态和应 ...
- openGauss数据库在CentOS上的安装实践
本文分享自华为云社区<openGauss数据库在CentOS上的安装实践>,作者:Gauss小松鼠 . 1.安装前准备 安装数据库前先要有已安装centOS 7.6的服务器+数据库安装包. ...
- 亿级日活业务稳如磐石,华为云CodeArts PerfTest发布
摘要:近日,华为云性能测试服务CodeArts PerfTest全新上线,提供低门槛.低成本的一站式云化性能测试解决方案. 本文分享自华为云社区<亿级日活业务稳如磐石,华为云CodeArts P ...
- MRS +Apache Zeppelin,让数据分析更便捷
摘要:选择轻量化.免运维.低成本的大数据云服务是业界趋势,如果搭建Zeppelin再同步自建一套Hadoop生态成本太高!因此我们通过结合华为云MRS服务构建数据中台. 本文分享自华为云社区<M ...
- 提升源代码安全性的C#和Java深度混淆工具——IpaGuard
提升源代码安全性的C#和Java深度混淆工具--IpaGuard 摘要 Ipa Guard是一款功能强大的IPA混淆工具,通过对iOS IPA文件进行混淆加密,保护其代码.资源和配置文件,降低破解反编 ...
- 实用指南:手把手搭建坚若磐石的DevSecOps框架
长期以来,安全问题一直被当作软件开发流程中的最后一步.开发者贡献可以实现软件特性的代码,但只在开发生命周期的测试和部署阶段考虑安全问题.随着盗版.恶意软件及网络犯罪事件飙升,开发流程需要做出改变. 开 ...
- Mac 播放 swf Flash文件
Flash已不再支持,swf 文件彻底打不开了(一些教程),通过PD虚拟,安装 windows 操作系统在里在装了 flash 播放器使用了一段时间,始终不方便.于是找到了如下方法 首先安装:Adob ...