目录

1. 结构体类型的声明

1.1 结构体回顾

1.1.1 结构的声明

1.1.2 结构体变量的创建和初始化

1.2 结构的特殊声明

1.3 结构的自引用

2. 结构体内存对齐

2.1 对齐规则

2.2 为什么存在内存对齐?

2.3 修改默认对齐数

3. 结构体传参

4. 结构体实现位段

4.1 什么是位段

4.2 位段的内存分配

4.3 位段的跨平台问题

4.4 位段的应用

4.5 位段使用的注意事项


1. 结构体类型的声明

前面我们在学习操作符的时候,已经学习了结构体的知识,这里稍微复习一下。

1.1 结构体回顾

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.1.1 结构的声明

struct tag
{
member-list;
}variable-list;

例如描述一个学生:

struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢

1.1.2 结构体变量的创建和初始化

#include <stdio.h>
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
};
int main()
{
//按照结构体成员的顺序初始化
struct Stu s = { "张三", 20, "男", "20230818001" };
printf("name: %s\n", s.name);
printf("age : %d\n", s.age);
printf("sex : %s\n", s.sex);
printf("id : %s\n", s.id);
//按照指定的顺序初始化
struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex =
"女" };
printf("name: %s\n", s2.name);
printf("age : %d\n", s2.age);
printf("sex : %s\n", s2.sex);
printf("id : %s\n", s2.id);
return 0;
}

1.2 结构的特殊声明

在声明结构的时候,可以不完全的声明。
比如:

struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], *p;

上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?

//在上面代码的基础上,下面的代码合法吗?
p = &x;

警告:
编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用一次。

1.3 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?
比如,定义一个链表的节点:

struct Node
{
int data;
struct Node next;
};

上述代码正确吗?如果正确,那sizeof(struct Node) 是多少?
仔细分析,其实是不行的,因为一个结构体中再包含一个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。
正确的自引用方式:

struct Node
{
int data;
struct Node* next;
};

在结构体自引用使用的过程中,夹杂了typedef 对匿名结构体类型重命名,也容易引入问题,看看
下面的代码,可行吗?

typedef struct
{
int data;
Node* next;
}Node;

答案是不行的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。
解决方案如下:定义结构体不要使用匿名结构体了

typedef struct Node
{
int data;
struct Node* next;
}Node;

2. 结构体内存对齐

我们已经掌握了结构体的基本使用了。现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的知识点: 结构体内存对齐。

2.1 对齐规则

首先得掌握结构体的对齐规则:
1. 结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。

  • 对齐数 = 编译器默认的一个对齐数 与 该成员变量大小的较小值。
  • - VS 中默认的值为 8
  • - Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小

3. 结构体总大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的
整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构
体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

struct S1
{
char c1;
int i;
char c2;
};
printf("%d\n", sizeof(struct S1));
//练习2
struct S2
{
char c1;
char c2;
int i;
};
printf("%d\n", sizeof(struct S2));
//练习3
struct S3
{
double d;
char c;
int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
printf("%d\n", sizeof(struct S4));

2.2 为什么存在内存对齐?

1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。假设一个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起 :

struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};

S1 和S2 类型的成员一模一样,但是S1 和S2 所占空间的大小有了一些区别。

2.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。

#include <stdio.h>
#pragma pack(1)//设置默认对齐数为1
struct S
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的对齐数,还原为默认
int main()
{
//输出的结果是什么?
printf("%d\n", sizeof(struct S));
return 0;
}

3. 结构体传参

struct S
{
int data[1000];
int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}

上面的print1 和print2 函数哪个好些?
答案是:首选print2函数。
原因:函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
结论:
结构体传参的时候,要传结构体的地址。

4. 结构体实现位段

结构体讲完就得讲讲结构体实现位段的能力。

4.1 什么是位段

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边有一个冒号和一个数字。
比如:

struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};

A就是一个位段类型。
那位段A所占内存的大小是多少?

printf("%d\n", 1 sizeof(struct A));

4.2 位段的内存分配

1. 位段的成员可以是int unsigned int signed int 或者是char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

4.3 位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会
出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃
剩余的位还是利用,这是不确定的。

总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

4.4 位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小一些,对网络的畅通是有帮助的。

4.5 位段使用的注意事项

位段的几个成员共有同一个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入一个变量中,然后赋值给位段的成员。

struct A
{
int _a : 2;
int _b : 5;
int _c : 10;
int _d : 30;
};
int main()
{
struct A sa = {0};
scanf("%d", &sa._b);//这是错误的
//正确的示范
int b = 0;
scanf("%d", &b);
sa._b = b;
return 0;
}
};

结构体(C语言)的更多相关文章

  1. c语言_文件操作_FILE结构体解释_涉及对操作系统文件FCB操作的解释_

    1. 文件和流的关系 C将每个文件简单地作为顺序字节流(如下图).每个文件用文件结束符结束,或者在特定字节数的地方结束,这个特定的字节数可以存储在系统维护的管理数据结构中.当打开文件时,就建立了和文件 ...

  2. Go语言结构体(struct)

    Go 语言结构体 Go 语言中数组可以存储同一类型的数据,但在结构体中我们可以为不同项定义不同的数据类型. 结构体是由一系列具有相同类型或不同类型的数据构成的数据集合. 结构体表示一项记录,比如保存图 ...

  3. c语言_FILE结构体解释及相关操作

    1. 文件和流的关系 C将每个文件简单地作为顺序字节流(如下图).每个文件用文件结束符结束,或者在特定字节数的地方结束,这个特定的字节数可以存储在系统维护的管理数据结构中.当打开文件时,就建立了和文件 ...

  4. Go语言基础之结构体

    Go语言基础之结构体 Go语言中没有“类”的概念,也不支持“类”的继承等面向对象的概念.Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性. 类型别名和自定义类型 自定义类型 在G ...

  5. go语言学习-结构体

    结构体 go语言中的结构体,是一种复合类型,有一组属性构成,这些属性被称为字段.结构体也是值类型,可以使用new来创建. 定义: type name struct { field1 type1 fie ...

  6. C语言学习之结构体

    前言 一直以来,C语言的学习都在入门阶段,只用到数组.函数.循环.选择.位运算这些基本的知识,较少用到指针.预处理.结构体.枚举类型.文件操作等这些C语言的精髓内容,现在想想真不敢说自己熟练掌握C语言 ...

  7. Go语言学习笔记十: 结构体

    Go语言学习笔记十: 结构体 Go语言的结构体语法和C语言类似.而结构体这个概念就类似高级语言Java中的类. 结构体定义 结构体有两个关键字type和struct,中间夹着一个结构体名称.大括号里面 ...

  8. go语言的结构体指针

    Go 语言结构体 Go 语言中数组可以存储同一类型的数据,但在结构体中我们可以为不同项定义不同的数据类型.   结构体是由一系列具有相同类型或不同类型的数据构成的数据集合.   结构体表示一项记录,比 ...

  9. Go语言中结构体的使用-第2部分OOP

    1 概述 结构体的基本语法请参见:Go语言中结构体的使用-第1部分结构体.结构体除了是一个复合数据之外,还用来做面向对象编程.Go 语言使用结构体和结构体成员来描述真实世界的实体和实体对应的各种属性. ...

  10. Go语言【第十一篇】:Go数据结构之:结构体

    Go语言结构体 Go语言中数组可以存储同一类型的数据,但在结构体中我们可以为不同项定义不同的数据类型,结构体是由一系列具有相同类型或不同类型数据构成的集合.结构体表示一项记录,比如:保存图书馆的书籍记 ...

随机推荐

  1. 如何实现nvidia显卡的cuda的多kernel并发执行???

    相关: CPU端多进程/多线程调用CUDA是否可以加速??? 参考: <CUDA C 编程指南>导读 https://developer.nvidia.com/blog/gpu-pro-t ...

  2. udp协议实现组播功能

    /*************************************************************************************************** ...

  3. int128输入输出流

    using i128 = __int128; istream &operator>>(istream &is, i128 &x) { string s; is &g ...

  4. 23 暑假友谊赛 No.3

    23 暑假友谊赛 No.3 Problem - B - Codeforces 贪心吧,每次看哪块瓷砖划算就尽量多的放哪块 #include <bits/stdc++.h> #define ...

  5. 15. 从0开始学ARM-位置无关码

    @ 目录 十九.位置无关码 一.为什么需要位置无关码? 1. exynos 4412启动流程 二.怎么实现位置无关码? 1. 什么是<编译地址>?什么是<运行地址>? 2. 举 ...

  6. SQLserver 数据库自定义函数

    起源 最近项目开发上使用的SQLserver数据库是2008版本,由于08版本的数据是没有字符串合并(STRING_AGG)这个函数(2017版本及以上支持)的,只有用stuff +for xml p ...

  7. Pipenv 使用

    Pipenv 是 Python 官方推荐的依赖管理工具,旨在简化 pip 和 virtualenv 的使用.其使用 Pipfile 和 Pipfile.lock 来管理项目的依赖和虚拟环境. 安装 p ...

  8. LOTO示波器统计曲线和故障分析pass/fail测试

    LOTO示波器统计曲线和故障分析pass/fail测试 虚拟示波器可以应用在工业自动化检测中,除了常规的检测波形和测量值参数以外,由多个行业客户定制和验证的统计曲线和故障分析(pass/fail)功能 ...

  9. 利用水墨映客图床作为COS服务器

    目录 利用水墨映客作为COS服务器 利用picGo配合typora上传图片 安装PicGo(以Windows为例) 安装lankong插件 在SpringBoot中开发图片上传工具类 设置图片上传请求 ...

  10. 【YashanDB数据库】YAS-00413 wait for receive timeout

    [问题分类]错误码处理 [关键字]yasql,00413 [问题描述]使用工具设置不同并发迁移数据的过程中,导致yasql登录报错:YAS-00413 wait for receive timeout ...