min_25筛入门
1.什么是min_25筛
min_25 筛和洲阁筛、杜教筛一样,是一种低于线性的用于求积性函数前缀和的筛法。常用 min_25 筛的时间复杂度为\(O(\frac{n^{\frac34}}{\log n})\),而经过优化可以达到\(O(n^{\frac23})\)(但是常数巨大且一般用不着)。
2.前置知识
2.1.数论函数
数论函数:定义域为\(\mathbb{N_+}\)子集的函数。
积性函数:若数论函数\(f(x)\)满足\(\forall a,b\in \mathbb N_+,(a,b)=1\Rightarrow f(ab)=f(a)f(b)\),则称\(f(x)\)为积性函数。
完全积性函数:若数论函数\(f(x)\)满足\(\forall a,b\in \mathbb N_+\Rightarrow f(ab)=f(a)f(b)\),则称\(f(x)\)完全积性函数。
狄利克雷卷积:对于数论函数\(f(x)\)和\(g(x)\),它们的狄利克雷卷积\((f*g)(x)=\sum_{i|x}f(i)g(\frac x i)\)
常见的积性函数有:\(\varphi,\mu,\)题目定义的\(,......\)
常见的完全积性函数有:
\(id(x)=x; \epsilon(x)=[x=1]; I(x)=1; ......\)
一些有趣的性质:
\]
\]
\(P\)为质数集合,\(p(i)(i>0)\)表示第\(i\)个质数,\(mp(i)(i>0)\)表示\(i\)的最小质因子。
2.2.埃拉托色尼筛
算法思想:对于质数\(p\),将\(p\)的倍数全部筛掉。时间复杂度为\(O(n\log\log n)\)
注意:对于质数\(p\),被筛掉数一定\(\ge p^2\);否则它一定会有\(< p\)质因子。
2.3.欧拉筛
算法思想:对于每个数\(i\),筛掉那些\(mp\le mp(i)\)的数。可以发现每个数只会在\(mp\)处被筛掉,因此是线性筛。
3.min_25筛
一般筛不够优秀的原因就是,它们枚举了数据范围内的每一个数,因此时间不会低于线性。
而低于线性的筛,就是利用算数基本原理,先计算质数的贡献,再推出合数的贡献。
min_25 筛的计算条件为:积性函数\(f(x)\)在质数处可以被表示为简单多项式,并且对于质数,\(f(p^c)\)可以被高速算出。
3.1.计算质数贡献
我们考虑先计算质数的贡献。即:
\]
由于\(f\)在质数处可以被表示为简单多项式,所以我们可以对于多项式的每一项分别计算。即只用考虑:
\]
考虑这样一个 DP :
\(g(a,b)\):前\(a\)个数进行\(b\)轮埃筛之后的贡献和。
可以表达为:
\]
设\(P'=[1,\lfloor\sqrt n\rfloor]\cap P\),即\(\sqrt n\)范围内的质数。不难发现,由于每个合数\(m\)必然有一个\(\le \sqrt m\)的质因子,因此我们只需要将\(P'\)中的质数全部筛一遍,\([1,n]\)剩下的都是质数了。故\(g(a,|P'|)\)就是我们需要的质数的贡献。
初始状态为:
\]
可以得到转移为:
\]
当\(a< p(b)^2\)的时候,不会筛掉任何数;否则考虑减掉的贡献。显然那些最小质因子为\(p(b)\)的数会被筛掉,即\(g(\lfloor\frac a{p(b)}\rfloor,b-1)\);但是这个东西里面有\(1\sim b-1\)的质数,不应该减掉,因此还要再补上\(g(p(b-1),b-1)\)。
这一部分可以用滚动数组优化。
3.2.计算总贡献
对于总的贡献,我们设这样一个函数\(S(a,b)\):
\]
请注意这里并没有质数的专门贡献,且里面的要求是 " 最小质因子不小于\(p(b)\) " 。
其中质数的贡献已经算出来了。对于合数的情况,我们枚举它的最小质因子和其指数,可以得到:
\]
其中\(\sum_{i=1}^{b-1}f(p(i))\)可以预先筛出来。然后\(S(\lfloor\frac a{p(i)^e}\rfloor,i+1)\)可以递归下去继续算。
3.3.实现
首先需要对\([1,\sqrt n]\)里面的数进行一发线性筛求出质数。
根据整除分块理论,我们在代入\(S(n,1)\)计算的时候,实际上\(a\)的取值只有\(O(\sqrt n)\)个。因此我们可以预处理这\(O(\sqrt n)\)个取值的离散化后下标。设其中一种取值为\(x\),那么当\(x\le \sqrt n\)的时候,我们直接将下标存下来;否则,由于\(\lfloor\frac n x\rfloor\le \sqrt n\),我们将下标存在\(\lfloor\frac n x\rfloor\)里面。
4.例题
4.1.[LOJ]区间素数个数
这里不需要求\(S\)的步骤,直接用第一步就可以了。
代码如下:
#include <cmath>
#include <cstdio>
typedef long long LL;
const int MAXS = 1e6 + 5;
template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
}
template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
}
LL val[MAXS << 1], g[MAXS];
int id1[MAXS], id2[MAXS];
int prime[MAXS], pn;
LL N;
int s, tot;
bool isPrime[MAXS];
void EulerSieve( const int siz )
{
isPrime[1] = true;
for( int i = 2 ; i <= siz ; i ++ )
{
if( ! isPrime[i] ) prime[++ pn] = i;
for( int j = 1 ; j <= pn && 1ll * i * prime[j] <= siz ; j ++ )
{
isPrime[i * prime[j]] = true;
if( ! ( i % prime[j] ) ) break;
}
}
}
int getID( const LL x ) { return x <= s ? id1[x] : id2[N / x]; }
signed main()
{
read( N );
s = sqrt( N ), tot = 0;
EulerSieve( s );
for( LL l = 1, r, v ; l <= N ; l = r + 1 )
{
v = N / l, r = N / ( N / l );
if( v <= s ) id1[v] = ++ tot;
else id2[N / v] = ++ tot;
val[tot] = v, g[tot] = v - 1;
}
for( int j = 1 ; j <= pn ; j ++ )
for( int i = 1 ; i <= tot && 1ll * prime[j] * prime[j] <= val[i] ; i ++ )
g[i] -= g[getID( val[i] / prime[j] )] - ( j - 1 );
write( g[getID( N )] ), putchar( '\n' );
return 0;
}
4.2.[LG P4213]杜教筛
正所谓 " 树套树的题怎么能用树套树做呢? " ,杜教筛的题怎么能用杜教筛?
考虑 min_25。事实上, min_25 最重要的地方就是求出\(g\),而后推\(S\)其实就是板子的事情了。
当\(p\)为质数时, \(\varphi(p)=p-1, \mu(p)=-1\),因此我们只需要用\(g\)求出素数个数和素数和即可。之后就是递归的事情了。
代码如下:
#include <cmath>
#include <cstdio>
typedef long long LL;
#define int LL
const int MAXS = 1e5 + 5;
template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
}
template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
}
template<typename _T>
_T MAX( const _T a, const _T b )
{
return a > b ? a : b;
}
LL gPhi[MAXS], gMu[MAXS], g1[MAXS], g2[MAXS];
LL ps[MAXS], ms[MAXS];
int val[MAXS], id1[MAXS], id2[MAXS];
int prime[MAXS], pn;
int N, s, cnt, tot;
bool isPrime[MAXS];
LL sqr( const LL x ) { return x * x; }
int getID( const int x ) { return x <= s ? id1[x] : id2[N / x]; }
void EulerSieve( const int siz )
{
isPrime[1] = true;
for( int i = 2 ; i <= siz ; i ++ )
{
if( ! isPrime[i] ) prime[++ pn] = i;
for( int j = 1 ; j <= pn && 1ll * i * prime[j] <= siz ; j ++ )
{
isPrime[i * prime[j]] = true;
if( ! ( i % prime[j] ) ) break;
}
}
for( int i = 1 ; i <= pn ; i ++ ) ps[i] = ps[i - 1] + prime[i] - 1, ms[i] = ms[i - 1] - 1;
}
LL SPhi( const int a, const int b )
{
if( a < prime[b] ) return 0;
LL ret = gPhi[getID( a )] - ps[b - 1];
if( b > tot ) return a <= prime[tot] ? 0 : ret;
LL phi, p, tmp;
for( int i = b ; i <= tot && 1ll * prime[i] * prime[i] <= a ; i ++ )
{
phi = prime[i] - 1, p = prime[i];
for( int j = 1 ; p * prime[i] <= a ; j ++, p *= prime[i], phi *= prime[i] )
ret += ( SPhi( a / p, i + 1 ) * phi + p * ( prime[i] - 1 ) );
}
return ret;
}
LL SMu( const int a, const int b )
{
if( a < prime[b] ) return 0;
LL ret = gMu[getID( a )] - ms[b - 1];
if( b > tot ) return a <= prime[tot] ? 0 : ret;
for( int i = b ; i <= tot && 1ll * prime[i] * prime[i] <= a ; i ++ ) ret -= SMu( a / prime[i], i + 1 );
return ret;
}
signed main()
{
int T;
read( T );
EulerSieve( 1e5 );
while( T -- )
{
read( N );
s = sqrt( N );
for( tot = 1 ; prime[tot] <= s ; tot ++ );
tot --, cnt = 0;
for( int l = 1, r, v ; l <= N ; l = r + 1 )
{
r = N / ( v = N / l );
if( v <= s ) id1[v] = ++ cnt;
else id2[N / v] = ++ cnt;
val[cnt] = v;
g1[cnt] = v - 1, g2[cnt] = ( 1ll * v * ( v + 1 ) >> 1 ) - 1;
}
for( int j = 1, k ; j <= tot ; j ++ )
for( int i = 1 ; i <= cnt && 1ll * prime[j] * prime[j] <= val[i] ; i ++ )
{
k = val[i] / prime[j];
g1[i] -= g1[getID( k )] - ( j - 1 );
g2[i] -= 1ll * prime[j] * ( g2[getID( k )] - g2[getID( prime[j - 1] )] );
}
for( int i = 1 ; i <= cnt ; i ++ ) gPhi[i] = g2[i] - g1[i], gMu[i] = - g1[i];
write( SPhi( N, 1 ) + 1 ), putchar( ' ' );
write( SMu( N, 1 ) + 1 ), putchar( '\n' );
}
return 0;
}
min_25筛入门的更多相关文章
- 关于 min_25 筛的入门以及复杂度证明
min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人 ...
- ●杜教筛入门(BZOJ 3944 Sum)
入门杜教筛啦. http://blog.csdn.net/skywalkert/article/details/50500009(好文!) 可以在$O(N^{\frac{2}{3}})或O(N^{\f ...
- 【UOJ448】【集训队作业2018】人类的本质 min_25筛
题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...
- Min_25 筛 学习笔记
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 ...
- UOJ188 Sanrd Min_25筛
传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\) ...
- 【SPOJ】DIVCNTK min_25筛
题目大意 给你 \(n,k\),求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k) \] 对 \(2^{64}\) 取模. 题解 一个min_25筛模板题. 令 \(f(n)= ...
- 【51NOD1847】奇怪的数学题 min_25筛
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...
- 【51NOD1965】奇怪的式子 min_25筛
题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个 ...
- min_25筛
min_25筛 用来干啥? 考虑一个积性函数\(F(x)\),用来快速计算前缀和\[\sum_{i=1}^nF(i)\] 当然,这个积性函数要满足\(F(x),x\in Prime\)可以用多项式表示 ...
随机推荐
- 201771010128王玉兰《面象对象程序设计(Java)》第七周学习总结
第一部分:基础知识总结: 1继承 A:用已有类来构建新类的一种机制,当定义了一个新类继承一个类时,这个新类就继承了这个类的方法和域以适应新的情况: B:特点:具有层次结构.子类继承父类的方法和域: C ...
- 07.django日志配置
https://docs.djangoproject.com/en/3.0/topics/logging/ https://yiyibooks.cn/xx/python_352/library/log ...
- PHP实现插入100万条数据优化
第一种方法一条一条执行插入,结果会很慢 <?php header("Content-Type:text/html;charset=utf-8"); date_default_ ...
- css不换行解决
word-wrap: break-word; word-break: break-all; white-space: pre-wrap;
- Python-pygame案例AI贪吃蛇
# coding: utf-8 import pygame,sys,time,random from pygame.locals import * # 定义颜色变量 redColour = pygam ...
- SpringBoot系列—简单的邮件系统
1. 效果发送效果图 2. 邮件开发准备工作 3. springboot引入mail服务 4. 启动应用,开始4种邮件发送测试 1. 效果发送效果图 连续发送了四封邮件:普通文本邮件,带附件的邮件,内 ...
- Matlab GUI程序设计入门——信号发生器+时域分析
背景:学习matlab gui编程入门,完成一个基于GUIDE的图形化界面程序,结合信号生成及分析等. 操作步骤: 1.新建程序 新建一个GUIDE程序 这里选择第一个选项,即创建一个空白的GUIDE ...
- StackOverflow 创始人关于如何高效编程的清单.md
这是 StackOverflow 联合创始人 Jeff Atwood 注释的十戒.程序员普遍有很强的自尊心,都应该看看本文,打印下来时刻提醒自己. "无我编程"发生在开发阶段,表现 ...
- 折腾自己的js闭包(一)
闭包是什么鬼? 15年10月份初到现在的公司时,有天晚上加班后临下班时,当时的组长问我知道闭包不,由于我是半路出家来做程序的,几乎很少用到闭包这个东东,并不是很了解这个概念,组长写出了这么段代码. v ...
- 从0开始探究vue-公共变量的管理
背景 在Vue项目中,我们总会遇到一些公共数据的处理,如方法拦截,全局变量等,本文旨在解决这些问题 解决方案 事件总线 所谓事件总线,就是在当前的Vue实例之外,再创建一个Vue实例来专门进行变量传递 ...