使用python求解向量值函数的雅各比(Jacobian)矩阵
考虑一个向量值函数$R^m \rightarrow R^n$,即$\textbf{y} = f(\textbf{x})$,它的雅各比(Jacobian)矩阵定义如下。

下面记录下一段使用python求向量值函数Jacobian矩阵的代码,只有向量值函数可用,如果为标量函数则会报错。
import torch # 定义函数
x = torch.tensor([1, 3, 5.], requires_grad=True)
A = torch.tensor([[1., 0, 1], [0, 1, 0], [1, 0, 1]])
y = A@x Weight = torch.eye(y.size()[0])
B = torch.tensor([])
for i, weight in enumerate(Weight):
B = torch.cat((B, torch.autograd.grad(y, x, grad_outputs=weight, retain_graph=True)[0]), 0)
print(B.view((y.size()[0], -1)))
这里我们以$x=[1,3,5]^T, y=Ax$为例,输出结果如下:

使用python求解向量值函数的雅各比(Jacobian)矩阵的更多相关文章
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- 三维重建面试4:Jacobian矩阵和Hessian矩阵
在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA ...
- Jacobian矩阵和Hessian矩阵
1.Jacobian矩阵 在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式.假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为 ...
- 用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最 ...
- 利用python求解物理学中的双弹簧质能系统详解
利用python求解物理学中的双弹簧质能系统详解 本文主要给大家介绍了关于利用python求解物理学中双弹簧质能系统的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 物理的 ...
- 梯度vs Jacobian矩阵vs Hessian矩阵
梯度向量 定义: 目标函数f为单变量,是关于自变量向量x=(x1,x2,-,xn)T的函数, 单变量函数f对向量x求梯度,结果为一个与向量x同维度的向量,称之为梯度向量: 1. Jacobian 在向 ...
- 【python】Leetcode每日一题-矩阵置零
[python]Leetcode每日一题-矩阵置零 [题目描述] 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 .请使用 原地 算法. 进阶: 一个直观的解 ...
- 【366】通过 python 求解 QP 问题
参考: 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题 参考: Quadratic Programming - Official website 步骤如下: 首先安装 ...
- python 求解线性方程组
Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - ...
随机推荐
- EF用导航熟悉遍历从表时,删除主表出错
var entitys= Repository.Table.Where(a => ids.Contains(a.UUID)).ToList(); entitys.ForEach(a => ...
- 安装superset遇到的坑
实验环境:ubuntu16.04 python环境: 3.6.7 安装参考:https://superset.incubator.apache.org/installation.html 特别提醒: ...
- [JavaWeb基础] 009.Struts2 上传文件
在web开发中,我们经常遇到要把文件上传下载的功能,这篇文章旨在指导大家完成文件上传功能 1.首先我们需要一个上传文件的页面. <!--在进行文件上传时,表单提交方式一定要是post的方式, 因 ...
- HttpSession之表单的重复提交 & 验证码
如果采用 HttpServletResponse.sendRedirct() 方法将客户端重定向到成功页面,将不会出现重复提交问题 1.表单的重复提交 1). 重复提交的情况: ①. 在表单提交到一个 ...
- This的关键字的使用
this: 1.可以用来修饰属性 方法 构造器 2.this理解为当前对象或当前正在创建的对象. 3.可以在构造器中通过this()形参的方式显示的调用本类中其他重载的指定的构造器 要求: 在构造器 ...
- PYTHON 黑帽子第二章总结
基于python3编写 import sys, socket, getopt, threading, argparse, subprocess # globals options listen = F ...
- 01 . RabbitMQ简介及部署
RabbitMQ简介 MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它 ...
- Rocket - devices - TLError
https://mp.weixin.qq.com/s/s_6qPkT2zwdqYLw5iK7_8g 简单介绍TLError的实现. 1. 继承自DevNullDevice TLError继承自DevN ...
- Rocket - decode - Simplify
https://mp.weixin.qq.com/s/YWXYNaRU-DbLOMxpzF2bpQ 介绍Simplify如何简化解码逻辑. 1. 使用 Simplify在DecodeL ...
- Java实现 LeetCode 769 最多能完成排序的块(单向遍历)
769. 最多能完成排序的块 数组arr是[0, 1, -, arr.length - 1]的一种排列,我们将这个数组分割成几个"块",并将这些块分别进行排序.之后再连接起来,使得 ...