Pandas Statistical Functions
import pandas as pd
import random
import numpy as np
n_rows=5
n_cols=2
df = pd.DataFrame(np.random.randn(n_rows, n_cols),
index = pd.date_range('1/1/2000', periods=n_rows),
columns = ['A','B'])
df=df.apply(lambda x:[int(xx*10) for xx in x],axis=0)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18 | 3 |
2000-01-02 | 5 | -4 |
2000-01-03 | -2 | 8 |
2000-01-04 | 0 | 1 |
2000-01-05 | -18 | 3 |
pct_change
## pct_change() to compute the percent change over a given number of periods
df.pct_change(periods=1) # b{t}=(a{t}-a{t-1})/a{t-1}
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | NaN | NaN |
2000-01-02 | -1.277778 | -2.333333 |
2000-01-03 | -1.400000 | -3.000000 |
2000-01-04 | -1.000000 | -0.875000 |
2000-01-05 | -inf | 2.000000 |
df.pct_change(periods=2) # b{t}=(a{t}-a{t-2})/a{t-2}
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | NaN | NaN |
2000-01-02 | NaN | NaN |
2000-01-03 | -0.888889 | 1.666667 |
2000-01-04 | -1.000000 | -1.250000 |
2000-01-05 | 8.000000 | -0.625000 |
Covariance
df.cov()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
A | 114.80 | -17.85 |
B | -17.85 | 18.70 |
df.A.cov(df.B)
-17.849999999999998
Correlation
df.corr()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
A | 1.000000 | -0.385253 |
B | -0.385253 | 1.000000 |
Data ranking
df.rank()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | 1.5 | 3.5 |
2000-01-02 | 5.0 | 1.0 |
2000-01-03 | 3.0 | 5.0 |
2000-01-04 | 4.0 | 2.0 |
2000-01-05 | 1.5 | 3.5 |
df.rank(axis=1)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | 1.0 | 2.0 |
2000-01-02 | 2.0 | 1.0 |
2000-01-03 | 1.0 | 2.0 |
2000-01-04 | 1.0 | 2.0 |
2000-01-05 | 1.0 | 2.0 |
method parameter:
average : average rank of tied group
min : lowest rank in the group
max : highest rank in the group
first : ranks assigned in the order they appear in the array
Window Functions
cumsum
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18 | 3 |
2000-01-02 | 5 | -4 |
2000-01-03 | -2 | 8 |
2000-01-04 | 0 | 1 |
2000-01-05 | -18 | 3 |
df.cumsum()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18 | 3 |
2000-01-02 | -13 | -1 |
2000-01-03 | -15 | 7 |
2000-01-04 | -15 | 8 |
2000-01-05 | -33 | 11 |
rolling
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18 | 3 |
2000-01-02 | 5 | -4 |
2000-01-03 | -2 | 8 |
2000-01-04 | 0 | 1 |
2000-01-05 | -18 | 3 |
r=df.rolling(window=2)
r.mean()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | NaN | NaN |
2000-01-02 | -6.5 | -0.5 |
2000-01-03 | 1.5 | 2.0 |
2000-01-04 | -1.0 | 4.5 |
2000-01-05 | -9.0 | 2.0 |
r.count()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | 1.0 | 1.0 |
2000-01-02 | 2.0 | 2.0 |
2000-01-03 | 2.0 | 2.0 |
2000-01-04 | 2.0 | 2.0 |
2000-01-05 | 2.0 | 2.0 |
r.max()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | NaN | NaN |
2000-01-02 | 5.0 | 3.0 |
2000-01-03 | 5.0 | 8.0 |
2000-01-04 | 0.0 | 8.0 |
2000-01-05 | 0.0 | 3.0 |
Method | Description |
---|---|
count() | Number of non-null observations |
sum() | Sum of values |
mean() | Mean of values |
median() | Arithmetic median of values |
min() | Minimum |
max() | Maximum |
std() | Bessel-corrected sample standard deviation |
var() | Unbiased variance |
skew() | Sample skewness (3rd moment) |
kurt() | Sample kurtosis (4th moment) |
quantile() | Sample quantile (value at %) |
apply() | Generic apply |
cov() | Unbiased covariance (binary) |
corr() | Correlation (binary) |
win_type can specify distribution function.
parameter 'on' to specify a column (rather than the default of the index) in a DataFrame.
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18 | 3 |
2000-01-02 | 5 | -4 |
2000-01-03 | -2 | 8 |
2000-01-04 | 0 | 1 |
2000-01-05 | -18 | 3 |
df.rolling(window='3d',min_periods=3).sum() ## 最近三天
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | NaN | NaN |
2000-01-02 | NaN | NaN |
2000-01-03 | -15.0 | 7.0 |
2000-01-04 | 3.0 | 5.0 |
2000-01-05 | -20.0 | 12.0 |
expanding
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18 | 3 |
2000-01-02 | 5 | -4 |
2000-01-03 | -2 | 8 |
2000-01-04 | 0 | 1 |
2000-01-05 | -18 | 3 |
df.expanding().mean() ## statistic with all data up to a point in time
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18.00 | 3.000000 |
2000-01-02 | -6.50 | -0.500000 |
2000-01-03 | -5.00 | 2.333333 |
2000-01-04 | -3.75 | 2.000000 |
2000-01-05 | -6.60 | 2.200000 |
Exponentially Weighted Windows(ewm)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18 | 3 |
2000-01-02 | 5 | -4 |
2000-01-03 | -2 | 8 |
2000-01-04 | 0 | 1 |
2000-01-05 | -18 | 3 |
df.ewm(alpha=0.9).mean()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | |
---|---|---|
2000-01-01 | -18.000000 | 3.000000 |
2000-01-02 | 2.909091 | -3.363636 |
2000-01-03 | -1.513514 | 6.873874 |
2000-01-04 | -0.151215 | 1.586859 |
2000-01-05 | -16.215282 | 2.858699 |
Pandas Statistical Functions的更多相关文章
- 小白学 Python 数据分析(2):Pandas (一)概述
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 概览 首先还是几个官方链接放一下: Pandas 官网:https://pandas.pydata.or ...
- Why Apache Spark is a Crossover Hit for Data Scientists [FWD]
Spark is a compelling multi-purpose platform for use cases that span investigative, as well as opera ...
- Scipy教程 - 统计函数库scipy.stats
http://blog.csdn.net/pipisorry/article/details/49515215 统计函数Statistical functions(scipy.stats) Pytho ...
- scipy.stats
scipy.stats Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种.所有的连续随机变量都是rv_continuous的派生类的对象,而所有的离散随机变量都是 ...
- GitHub相关资料&&可以参加的开源项目
GitHub相关的资料 有不懂的地方时可以看GitHub Docs. GitHub tutorial GitHub glossary GitHub的字典,可以看到里面特定的概念. All about ...
- R实战 第十二篇:随机数
由R生成的随机数实际上伪随机数,也就是说,随机数是由某种算法而不是真正的随机过程产生的,随机数生成器需要一个初始值来生成数字,该初始值叫做种子.通过把种子设置为特定的值,可以保证每次运行同一段代码时都 ...
- PP图和QQ图
一. QQ图 分位数图示法(Quantile Quantile Plot,简称 Q-Q 图) 统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们 ...
- D01-R语言基础学习
R语言基础学习——D01 20190410内容纲要: 1.R的下载与安装 2.R包的安装与使用方法 (1)查看已安装的包 (2)查看是否安装过包 (3)安装包 (4)更新包 3.结果的重用 4.R处理 ...
- matlab toolboxes 大全
MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics - Chaos - Chemi ...
随机推荐
- 「BZOJ4510」「Usaco2016 Jan」Radio Contact 解题报告
无线电联系 Radio Contact 题目描述 Farmer John has lost his favorite cow bell, and Bessie the cow has agreed t ...
- 《带你装B,带你飞》pytest修仙之路3 - setup/teardown
1. 简介 学过unittest的都知道里面用前置和后置setup和teardown非常好用,在每次用例开始前和结束后都去执行一次.当然还有更高级一点的setupClass和teardownClass ...
- Django之表高级操作
目录 一.如何开启自己的测试脚本? 二.对表数据的添加.更新.删除 1.create() 2.update() 3.delete() 4.查看执行的sql语句 三. 单表查询13个操作 返回Query ...
- 16.用pycharm导入自己写的模块时,import无法识别的解决办法
我们用pycharm打开自己写的代码,当多个文件之间有相互依赖的关系的时候,import无法识别自己写的文件,但是我们写的文件又确实在同一个文件夹中, 这种问题可以用下面的方法解决: 1)打开File ...
- Mysql备份与恢复(2)---逻辑备份
数据库及时备份可以帮助我们在数据库出现异常宕机时及时的使用备份数据进行恢复工作,将因为数据库宕机产生的影响降低到最小.上一篇针对使用xtrabackup工具进行物理备份和数据恢复做了一个详细讲解,本篇 ...
- 量化投资学习笔记07——python知识补漏
看<量化投资:以python为工具>这本书,第一部分是python的基础知识.这一部分略读了,只看我还不知道或不熟的. 定义复数 x = complex(2, 5) #2+5j 也可以直接 ...
- spring boot事务管理
spring boot集成事务十分的简单,只需要在启动类上面增加@EnableTransactionManagement注解,然后在需要实现事务的方法上添加@Transactional注解就可以了.下 ...
- java中一些常考知识
一.static的作用 static是修饰符,用于修饰成员变量(静态变量/类变量). static修饰的成员被所有对象共享. static优先于对象存在. static修饰的成员可以用类名.静态成员来 ...
- rsync配置两台服务器之间的文件备份(同步)
rsync配置两台服务器之间的文件备份(同步) 前情提要 环境: 192.168.1.2 主服务器 centos 7.7 192.168.1.3 备份服务器 centos 7.7 rsync 安装(两 ...
- schedule of 2016-10-31~2016-11-6(Monday~Sunday)——1st semester of 2nd Grade
most important things to do 1.joint phd preparations 2.journal paper to write 3.solid fundamental kn ...