Pandas Statistical Functions
import pandas as pd
import random
import numpy as np
n_rows=5
n_cols=2
df = pd.DataFrame(np.random.randn(n_rows, n_cols),
index = pd.date_range('1/1/2000', periods=n_rows),
columns = ['A','B'])
df=df.apply(lambda x:[int(xx*10) for xx in x],axis=0)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18 | 3 |
| 2000-01-02 | 5 | -4 |
| 2000-01-03 | -2 | 8 |
| 2000-01-04 | 0 | 1 |
| 2000-01-05 | -18 | 3 |
pct_change
## pct_change() to compute the percent change over a given number of periods
df.pct_change(periods=1) # b{t}=(a{t}-a{t-1})/a{t-1}
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | NaN | NaN |
| 2000-01-02 | -1.277778 | -2.333333 |
| 2000-01-03 | -1.400000 | -3.000000 |
| 2000-01-04 | -1.000000 | -0.875000 |
| 2000-01-05 | -inf | 2.000000 |
df.pct_change(periods=2) # b{t}=(a{t}-a{t-2})/a{t-2}
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | NaN | NaN |
| 2000-01-02 | NaN | NaN |
| 2000-01-03 | -0.888889 | 1.666667 |
| 2000-01-04 | -1.000000 | -1.250000 |
| 2000-01-05 | 8.000000 | -0.625000 |
Covariance
df.cov()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| A | 114.80 | -17.85 |
| B | -17.85 | 18.70 |
df.A.cov(df.B)
-17.849999999999998
Correlation
df.corr()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| A | 1.000000 | -0.385253 |
| B | -0.385253 | 1.000000 |
Data ranking
df.rank()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | 1.5 | 3.5 |
| 2000-01-02 | 5.0 | 1.0 |
| 2000-01-03 | 3.0 | 5.0 |
| 2000-01-04 | 4.0 | 2.0 |
| 2000-01-05 | 1.5 | 3.5 |
df.rank(axis=1)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | 1.0 | 2.0 |
| 2000-01-02 | 2.0 | 1.0 |
| 2000-01-03 | 1.0 | 2.0 |
| 2000-01-04 | 1.0 | 2.0 |
| 2000-01-05 | 1.0 | 2.0 |
method parameter:
average : average rank of tied group
min : lowest rank in the group
max : highest rank in the group
first : ranks assigned in the order they appear in the array
Window Functions
cumsum
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18 | 3 |
| 2000-01-02 | 5 | -4 |
| 2000-01-03 | -2 | 8 |
| 2000-01-04 | 0 | 1 |
| 2000-01-05 | -18 | 3 |
df.cumsum()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18 | 3 |
| 2000-01-02 | -13 | -1 |
| 2000-01-03 | -15 | 7 |
| 2000-01-04 | -15 | 8 |
| 2000-01-05 | -33 | 11 |
rolling
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18 | 3 |
| 2000-01-02 | 5 | -4 |
| 2000-01-03 | -2 | 8 |
| 2000-01-04 | 0 | 1 |
| 2000-01-05 | -18 | 3 |
r=df.rolling(window=2)
r.mean()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | NaN | NaN |
| 2000-01-02 | -6.5 | -0.5 |
| 2000-01-03 | 1.5 | 2.0 |
| 2000-01-04 | -1.0 | 4.5 |
| 2000-01-05 | -9.0 | 2.0 |
r.count()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | 1.0 | 1.0 |
| 2000-01-02 | 2.0 | 2.0 |
| 2000-01-03 | 2.0 | 2.0 |
| 2000-01-04 | 2.0 | 2.0 |
| 2000-01-05 | 2.0 | 2.0 |
r.max()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | NaN | NaN |
| 2000-01-02 | 5.0 | 3.0 |
| 2000-01-03 | 5.0 | 8.0 |
| 2000-01-04 | 0.0 | 8.0 |
| 2000-01-05 | 0.0 | 3.0 |
| Method | Description |
|---|---|
| count() | Number of non-null observations |
| sum() | Sum of values |
| mean() | Mean of values |
| median() | Arithmetic median of values |
| min() | Minimum |
| max() | Maximum |
| std() | Bessel-corrected sample standard deviation |
| var() | Unbiased variance |
| skew() | Sample skewness (3rd moment) |
| kurt() | Sample kurtosis (4th moment) |
| quantile() | Sample quantile (value at %) |
| apply() | Generic apply |
| cov() | Unbiased covariance (binary) |
| corr() | Correlation (binary) |
win_type can specify distribution function.
parameter 'on' to specify a column (rather than the default of the index) in a DataFrame.
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18 | 3 |
| 2000-01-02 | 5 | -4 |
| 2000-01-03 | -2 | 8 |
| 2000-01-04 | 0 | 1 |
| 2000-01-05 | -18 | 3 |
df.rolling(window='3d',min_periods=3).sum() ## 最近三天
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | NaN | NaN |
| 2000-01-02 | NaN | NaN |
| 2000-01-03 | -15.0 | 7.0 |
| 2000-01-04 | 3.0 | 5.0 |
| 2000-01-05 | -20.0 | 12.0 |
expanding
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18 | 3 |
| 2000-01-02 | 5 | -4 |
| 2000-01-03 | -2 | 8 |
| 2000-01-04 | 0 | 1 |
| 2000-01-05 | -18 | 3 |
df.expanding().mean() ## statistic with all data up to a point in time
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18.00 | 3.000000 |
| 2000-01-02 | -6.50 | -0.500000 |
| 2000-01-03 | -5.00 | 2.333333 |
| 2000-01-04 | -3.75 | 2.000000 |
| 2000-01-05 | -6.60 | 2.200000 |
Exponentially Weighted Windows(ewm)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18 | 3 |
| 2000-01-02 | 5 | -4 |
| 2000-01-03 | -2 | 8 |
| 2000-01-04 | 0 | 1 |
| 2000-01-05 | -18 | 3 |
df.ewm(alpha=0.9).mean()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| A | B | |
|---|---|---|
| 2000-01-01 | -18.000000 | 3.000000 |
| 2000-01-02 | 2.909091 | -3.363636 |
| 2000-01-03 | -1.513514 | 6.873874 |
| 2000-01-04 | -0.151215 | 1.586859 |
| 2000-01-05 | -16.215282 | 2.858699 |
Pandas Statistical Functions的更多相关文章
- 小白学 Python 数据分析(2):Pandas (一)概述
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 概览 首先还是几个官方链接放一下: Pandas 官网:https://pandas.pydata.or ...
- Why Apache Spark is a Crossover Hit for Data Scientists [FWD]
Spark is a compelling multi-purpose platform for use cases that span investigative, as well as opera ...
- Scipy教程 - 统计函数库scipy.stats
http://blog.csdn.net/pipisorry/article/details/49515215 统计函数Statistical functions(scipy.stats) Pytho ...
- scipy.stats
scipy.stats Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种.所有的连续随机变量都是rv_continuous的派生类的对象,而所有的离散随机变量都是 ...
- GitHub相关资料&&可以参加的开源项目
GitHub相关的资料 有不懂的地方时可以看GitHub Docs. GitHub tutorial GitHub glossary GitHub的字典,可以看到里面特定的概念. All about ...
- R实战 第十二篇:随机数
由R生成的随机数实际上伪随机数,也就是说,随机数是由某种算法而不是真正的随机过程产生的,随机数生成器需要一个初始值来生成数字,该初始值叫做种子.通过把种子设置为特定的值,可以保证每次运行同一段代码时都 ...
- PP图和QQ图
一. QQ图 分位数图示法(Quantile Quantile Plot,简称 Q-Q 图) 统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们 ...
- D01-R语言基础学习
R语言基础学习——D01 20190410内容纲要: 1.R的下载与安装 2.R包的安装与使用方法 (1)查看已安装的包 (2)查看是否安装过包 (3)安装包 (4)更新包 3.结果的重用 4.R处理 ...
- matlab toolboxes 大全
MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics - Chaos - Chemi ...
随机推荐
- 01_垂直居中body中的应用
1: 应用场景 在body中书写一个代码块, 使其相对于body垂直居中 <!DOCTYPE html> <html lang="en"> <head ...
- MySQL之插入数据(添加数据)-INSERT
基本语法: INSERT 语句有两种语法形式,分别是 INSERT…VALUES 语句和 INSERT…SET 语句. 1.INSERT...VLAUES语句 INSERT VLAUES的语法格式如下 ...
- Activity启动过程源码分析(Android 8.0)
Activity启动过程源码分析 本文来Activity的启动流程,一般我们都是通过startActivity或startActivityForResult来启动目标activity,那么我们就由此出 ...
- 微信生成二维码 PHP
<?php /** * Created by PhpStorm. * User: liyiming * Date: 2019/8/8 * Time: 14:23 */ # 生成二维码 class ...
- 一个.NET程序员 "2019" 跳槽3次的悲惨故事
2019年是值得深思的一年,在找工作上没有那么用心,导致碌碌无为,在这里我建议大家找工作的时候不要太着急...要不然会被逼疯的,一定不能被“工作”挑,一定要做到挑"工作".:那我就 ...
- 由数据迁移至MongoDB导致的数据不一致问题及解决方案
故事背景 企业现状 2019年年初,我接到了一个神秘电话,电话那头竟然准确的说出了我的昵称:上海小胖. 我想这事情不简单,就回了句:您好,我是小胖,请问您是? "我就是刚刚加了你微信的 xx ...
- 微信小程序订阅消息,我踩过的坑都在这里了!
旧的模板消息将在 2020 年 1 月 10 号全面下架,也就是今天,不过貌似现在还可以用!!!我已经改好了,只不过还没有上线,准备坚持到最后一天! 0.订阅消息 简单介绍一下订阅消息的特点: 用户授 ...
- 学以致用,react学习前奏准备阶段
ReactJS:支持React开发,提供JSX代码提示,高亮显示,ReactJS官方介绍 1.cdm→ componentDidMount: fn() { ... } cdm 2.cdup→ ...
- C# 根据链接提取div内容
安装NuGet包 HtmlAgilityPack var wc = new WebClient(); wc.Encoding = Encoding.GetEncoding("UTF-8 ...
- Eclipse自动添加注释模板
Eclipse使用自动注释:在Eclipse工具的Window\preferences\JAVA\Code Style\Code templates\Comments下设置以下模版 文件(Files) ...