import pandas as pd
import random
import numpy as np
n_rows=5
n_cols=2
df = pd.DataFrame(np.random.randn(n_rows, n_cols),
index = pd.date_range('1/1/2000', periods=n_rows),
columns = ['A','B'])
df=df.apply(lambda x:[int(xx*10) for xx in x],axis=0)
df

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18 3
2000-01-02 5 -4
2000-01-03 -2 8
2000-01-04 0 1
2000-01-05 -18 3

pct_change

## pct_change() to compute the percent change over a given number of periods
df.pct_change(periods=1) # b{t}=(a{t}-a{t-1})/a{t-1}

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 NaN NaN
2000-01-02 -1.277778 -2.333333
2000-01-03 -1.400000 -3.000000
2000-01-04 -1.000000 -0.875000
2000-01-05 -inf 2.000000
df.pct_change(periods=2)  # b{t}=(a{t}-a{t-2})/a{t-2}

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 NaN NaN
2000-01-02 NaN NaN
2000-01-03 -0.888889 1.666667
2000-01-04 -1.000000 -1.250000
2000-01-05 8.000000 -0.625000

Covariance

df.cov()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
A 114.80 -17.85
B -17.85 18.70
df.A.cov(df.B)
-17.849999999999998

Correlation

df.corr()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
A 1.000000 -0.385253
B -0.385253 1.000000

Data ranking

df.rank()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 1.5 3.5
2000-01-02 5.0 1.0
2000-01-03 3.0 5.0
2000-01-04 4.0 2.0
2000-01-05 1.5 3.5
df.rank(axis=1)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 1.0 2.0
2000-01-02 2.0 1.0
2000-01-03 1.0 2.0
2000-01-04 1.0 2.0
2000-01-05 1.0 2.0
method parameter:
average : average rank of tied group
min : lowest rank in the group
max : highest rank in the group
first : ranks assigned in the order they appear in the array

Window Functions

cumsum

df

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18 3
2000-01-02 5 -4
2000-01-03 -2 8
2000-01-04 0 1
2000-01-05 -18 3
df.cumsum()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18 3
2000-01-02 -13 -1
2000-01-03 -15 7
2000-01-04 -15 8
2000-01-05 -33 11

rolling

df

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18 3
2000-01-02 5 -4
2000-01-03 -2 8
2000-01-04 0 1
2000-01-05 -18 3
r=df.rolling(window=2)
r.mean()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 NaN NaN
2000-01-02 -6.5 -0.5
2000-01-03 1.5 2.0
2000-01-04 -1.0 4.5
2000-01-05 -9.0 2.0
r.count()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 1.0 1.0
2000-01-02 2.0 2.0
2000-01-03 2.0 2.0
2000-01-04 2.0 2.0
2000-01-05 2.0 2.0
r.max()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 NaN NaN
2000-01-02 5.0 3.0
2000-01-03 5.0 8.0
2000-01-04 0.0 8.0
2000-01-05 0.0 3.0
Method Description
count() Number of non-null observations
sum() Sum of values
mean() Mean of values
median() Arithmetic median of values
min() Minimum
max() Maximum
std() Bessel-corrected sample standard deviation
var() Unbiased variance
skew() Sample skewness (3rd moment)
kurt() Sample kurtosis (4th moment)
quantile() Sample quantile (value at %)
apply() Generic apply
cov() Unbiased covariance (binary)
corr() Correlation (binary)

win_type can specify distribution function.

parameter 'on' to specify a column (rather than the default of the index) in a DataFrame.

df

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18 3
2000-01-02 5 -4
2000-01-03 -2 8
2000-01-04 0 1
2000-01-05 -18 3
df.rolling(window='3d',min_periods=3).sum()   ## 最近三天

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 NaN NaN
2000-01-02 NaN NaN
2000-01-03 -15.0 7.0
2000-01-04 3.0 5.0
2000-01-05 -20.0 12.0

expanding

df

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18 3
2000-01-02 5 -4
2000-01-03 -2 8
2000-01-04 0 1
2000-01-05 -18 3
df.expanding().mean()  ## statistic with all data up to a point in time

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18.00 3.000000
2000-01-02 -6.50 -0.500000
2000-01-03 -5.00 2.333333
2000-01-04 -3.75 2.000000
2000-01-05 -6.60 2.200000

Exponentially Weighted Windows(ewm)

df

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18 3
2000-01-02 5 -4
2000-01-03 -2 8
2000-01-04 0 1
2000-01-05 -18 3
df.ewm(alpha=0.9).mean()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
A B
2000-01-01 -18.000000 3.000000
2000-01-02 2.909091 -3.363636
2000-01-03 -1.513514 6.873874
2000-01-04 -0.151215 1.586859
2000-01-05 -16.215282 2.858699

Pandas Statistical Functions的更多相关文章

  1. 小白学 Python 数据分析(2):Pandas (一)概述

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 概览 首先还是几个官方链接放一下: Pandas 官网:https://pandas.pydata.or ...

  2. Why Apache Spark is a Crossover Hit for Data Scientists [FWD]

    Spark is a compelling multi-purpose platform for use cases that span investigative, as well as opera ...

  3. Scipy教程 - 统计函数库scipy.stats

    http://blog.csdn.net/pipisorry/article/details/49515215 统计函数Statistical functions(scipy.stats) Pytho ...

  4. scipy.stats

    scipy.stats Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种.所有的连续随机变量都是rv_continuous的派生类的对象,而所有的离散随机变量都是 ...

  5. GitHub相关资料&&可以参加的开源项目

    GitHub相关的资料 有不懂的地方时可以看GitHub Docs. GitHub tutorial GitHub glossary GitHub的字典,可以看到里面特定的概念. All about ...

  6. R实战 第十二篇:随机数

    由R生成的随机数实际上伪随机数,也就是说,随机数是由某种算法而不是真正的随机过程产生的,随机数生成器需要一个初始值来生成数字,该初始值叫做种子.通过把种子设置为特定的值,可以保证每次运行同一段代码时都 ...

  7. PP图和QQ图

     一. QQ图      分位数图示法(Quantile Quantile Plot,简称 Q-Q 图)       统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们 ...

  8. D01-R语言基础学习

    R语言基础学习——D01 20190410内容纲要: 1.R的下载与安装 2.R包的安装与使用方法 (1)查看已安装的包 (2)查看是否安装过包 (3)安装包 (4)更新包 3.结果的重用 4.R处理 ...

  9. matlab toolboxes 大全

    MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics  - Chaos - Chemi ...

随机推荐

  1. Lyft Level 5 Challenge 2018 - Final Round (Open Div. 2) (前三题题解)

    这场比赛好毒瘤哇,看第四题好像是中国人出的,怕不是dllxl出的. 第四道什么鬼,互动题不说,花了四十五分钟看懂题目,都想砸电脑了.然后发现不会,互动题从来没做过. 不过这次新号上蓝名了(我才不告诉你 ...

  2. Cent OS防火墙配置端口开放

    CentOS 6内置的防火墙为iptables,Cent OS7,内置的防火墙则是firewalld iptables 防火墙设置 1.打开/关闭/重启防火墙 #开启防火墙(重启后永久生效): chk ...

  3. 解决apt-get命令出现的安装源错误

    首先linux环境下打开网页,输入上网账号密码,确保已经联网 直接安装软件或库的时候,在管理员模式下,在终端输入:apt-get install A可以自动安装A 有时会出现下面的安装源错误 这是因为 ...

  4. C++ | C++ 基础知识 | 指针、数组与引用

    1.指针 在 C++ 语言中存放及使用内存地址是通过指针和引用完成的. char c = 'a'; // 声明 c 变量,c 变量存储的是 'a' 的值. char* p = &c; // 声 ...

  5. hexo博客零基础搭建系列(一)

    文章目录 其他搭建 1.简介 2.安装Node和Git 3.安装Hexo 4.Hexo的目录结构 5.我的版本 其他搭建 不好意思,下面的链接都是CSDN的链接,如果要在博客园看,请点我的分类查看.因 ...

  6. GC 为什么要挂起用户线程? 什么愁什么怨?

    GC 为什么要挂起用户线程? 什么愁什么怨? 前言 JVM 系列文章的第一篇.敬请期待后续. 故障描述 某年某月某日 上午,线上发生故障,经过排查,发现某核心服务 Dubbo 接口超时. 故障根源 查 ...

  7. Spring中常见的设计模式——适配器模式

    一.适配器模式的应用场景 适配器模式(Adapter Pattern)是指将一个类的接口转换成用户期待的另一个接口,使原本接口不兼容的类可以一起工作,属于构造设计模式. 适配器适用于以下几种业务场景: ...

  8. 用K-Means聚类分析做客户分群

    聚类指的是把集合,分组成多个类,每个类中的对象都是彼此相似的.K-means是聚类中最常用的方法之一,它是基于点与点距离的相似度来计算最佳类别归属. 在使用该方法前,要注意(1)对数据异常值的处理:( ...

  9. webpack进阶用法你都get到了么?

    如何消除无用代码:打包自己的私有js库:实现代码分割和动态import提升初次加载速度:配置eslint规范团队代码规范:打包异常抓捕你都get到了么? 摇树优化:Tree Shaking webpa ...

  10. 异数OS TCP协议栈测试(二)--短连接篇

    异数OS TCP协议栈测试(二)--短连接篇 本文来自异数OS社区 github:   异数OS-织梦师(消息中间件)群: 476260389 测试目标 TCP 短链接IO性能测试,Client Se ...