题面

把\(N\)个无色格子排成一行,选若干个格子染成黑色,要求每个黑色格子之间至少间隔\(M\)个格子,求方案数

思路:

矩阵加速

根据题面,这一题似乎可以用递推

设第\(i\)个格子的编号为\(i\),有\(i\)个格子时的方案数为\(f(i)\)

显然,当 \(i \le M+1\) 时,

可以所有格子不染色(方案数为\(1\)种,或者最多一个格子染色(方案数为\(i\)种)

所以有\(f(i)=i+1\)

当\(i>M+1\)时,

对于第\(i\)个格子可以由第\(i-1\)个格子转移过来,

而第\(i\)个格子有两种情况

1、不染色,显然可以这种情况下方案数为\(f(i-1)\)

2、染色,可以看出第\([i-m,i-1]\)个格子必定不染色,也就是没有贡献的,方案数为\(f(i-m-1)\)

但是!

\(N \le 10^{18}\),\(M \le 15\)

可以使用矩阵加速递推

求解

我们要记录的是应该是\(f(i) \to f(i+m)\)一共\(m+1\)个元素,于是就用一个\((M+1)^2\)的矩阵进行加速,配合快速幂求解

Code:

#include<bits/stdc++.h>
#define ll long long
#define Mod 1000000007
#define N 20
using namespace std;
int n;
ll b;
struct node{//矩阵放结构体里
ll f[N][N];
}res,a;
node operator* (const node a,const node b)//重载*运算
{
int i,j,k;
node c;ll res;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
res=0;
for(k=0;k<n;k++)
res=(res+a.f[i][k]*b.f[k][j])%Mod;
c.f[i][j]=res;
}
return c;
}
void init(){//初始化
int i;
for(i=0;i<n;i++) res.f[0][i]=i+2;//矩阵下标从0开始,所以+2
for(i=0;i<n-1;i++) a.f[i+1][i]=1;
a.f[n-1][n-1]=a.f[0][n-1]=1;
}
void quickPow(ll b)
{
while(b)
{
if(b&1) res=res*a;
b>>=1;a=a*a;
}
}
int main()
{
scanf("%lld%d",&b,&n);--b,++n;//res初始为b=1的情况,所以实际的b要-1
init();quickPow(b);//n++是方便计算间隔
printf("%lld",res.f[0][0]);
return 0;
}

「P5004」专心OI - 跳房子 解题报告的更多相关文章

  1. 洛谷 P4714 「数学」约数个数和 解题报告

    P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点 ...

  2. 「NOI2013」树的计数 解题报告

    「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...

  3. 「NOI2016」优秀的拆分 解题报告

    「NOI2016」优秀的拆分 这不是个SAM题,只是个LCP题目 95分的Hash很简单,枚举每个点为开头和末尾的AA串个数,然后乘一下之类的. 考虑怎么快速求"每个点为开头和末尾的AA串个 ...

  4. 「NOI2016」循环之美 解题报告

    「NOI2016」循环之美 对于小数\(\frac{a}{b}\),如果它在\(k\)进制下被统计,需要满足要求并且不重复. 不重复我们确保这个分数是最简分数即\((a,b)=1\) 满足要求需要满足 ...

  5. 「FJOI2018」领导集团问题 解题报告

    「FJOI2018」领导集团问题 题意:给你一颗\(n\)个点的带点权有根树,选择一个点集\(S\),使得点集中所有祖先的点权$\le \(子孙的点权,最大化\)|S|$(出题人语死早...) 一个显 ...

  6. 「SP25784」BUBBLESORT - Bubble Sort 解题报告

    SP25784 BUBBLESORT - Bubble Sort 题目描述 One of the simplest sorting algorithms, the Bubble Sort, can b ...

  7. 「SP122」STEVE - Voracious Steve 解题报告

    SP122 STEVE - Voracious Steve 题意翻译 Problem Steve和他的一个朋友在玩游戏,游戏开始前,盒子里有 n个甜甜圈,两个人轮流从盒子里抓甜甜圈,每次至少抓 1个, ...

  8. 「Luogu」[JSOI2007]字符加密 解题报告

    题面 思路: 作为一个后缀数组的初学者,当然首先想到的是后缀数组 把\(s\)这个串首尾相接,扩展为原来的两倍,就能按后缀数组的方法处理 证明: 神仙一眼就看出这是后缀的裸题,我这个蒟蒻想了半天想不出 ...

  9. 「CF242E」XOR on Segment 解题报告

    题面 长度为\(n\)的数列,现有两种操作: 1.区间异或操作 2.区间求和操作 对于每个查询,输出答案 思路: 线段树+二进制拆位 线段树区间修改一般使用的都是懒标记的方法,但是对于异或,懒标记的方 ...

随机推荐

  1. UISearchDisplayController “No Results“ cancel修改

    Recently I needed to fully customize a UISearchBar, so here are some basic "recipes" on ho ...

  2. hdu 3264 Open-air shopping malls(圆相交面积+二分)

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  3. 为 Ubuntu 18.04 添加开机自动加载 ntfs分区 功能

    注意:Ubuntu终端命令是区分大小写的 1,准备的:     ntfs-3g -- 提供ntfs读写支持(一般说来是自带的,若没有,可是使用 sudo apt-get isntall ntfs-3g ...

  4. hdu 1358 Period (KMP求循环次数)

    Problem - 1358 KMP求循环节次数.题意是,给出一个长度为n的字符串,要求求出循环节数大于1的所有前缀.可以直接用KMP的方法判断是否有完整的k个循环节,同时计算出当前前缀的循环节的个数 ...

  5. supersockets命令过滤器

    关键字: 命令过滤器, 命令, 过滤器, OnCommandExecuting, OnCommandExecuted SuperSocket 中的命令过滤器看起来有些像 ASP.NET MVC 中的 ...

  6. 高级教程: 作出动态决策和 Bi-LSTM CRF 重点

    动态 VS 静态深度学习工具集 Pytorch 是一个 动态 神经网络工具包. 另一个动态工具包的例子是 Dynet (我之所以提这个是因为使用 Pytorch 和 Dynet 是十分类似的. 如果你 ...

  7. JAVA总结---序列化的三种方式

    序列化和反序列化 序列化:可以将对象转化成一个字节序列,便于存储. 反序列化:将序列化的字节序列还原 优点:可以实现对象的"持久性", 所谓持久性就是指对象的生命周期不取决于程序. ...

  8. 推荐C++程序员阅读《CLR via C#》

    这本书的作者Jeffrey Richter也是<Windows核心编程>的作者. <Windows核心编程>更多的是对window系统相关知识的挖掘积累.<CLR via ...

  9. C#将可编译为本地机器码

    微软宣布了.net native的开发者预览版,详见这里. 这是一个大家期待了很多年的特性.每年在技术论坛上都有无数的人问,C#能否编译成本地机器码. 有了这个特性之后,更多开发商会开始选择C#来开发 ...

  10. Vue 设置class样式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...