小Hi:我们可以知道,任意一个正整数k,若k≥2,则k可以表示成若干个质数相乘的形式。Eratosthenes筛法中,在枚举k的每一个质因子时,我们都计算了一次k,从而造成了冗余。因此在改进算法中,只利用k的最小质因子去计算一次k。

首先让我们了解一下Eular筛法,其伪代码为:

isPrime[] = true
primeList = []
primeCount = 0
For i = 2 .. N
If isPrime[i] Then
primeCount = primeCount + 1
primeList[ primeCount ] = i
End If
For j = 1 .. primeCount
If (i * primeList[j] > N) Then
Break
End If
isPrime[ i * primeList[j] ] = false
If (i % primeList[j] == 0) Then
Break
End If
End For
End For

与Eratosthenes筛法不同的是,对于外层枚举i,无论i是质数,还是是合数,我们都会用i的倍数去筛。但在枚举的时候,我们只枚举i的质数倍。比如2i,3i,5i,...,而不去枚举4i,6i...,原因我们后面会讲到。

此外,在从小到大依次枚举质数p来计算i的倍数时,我们还需要检查i是否能够整除p。若i能够整除p,则停止枚举。

利用该算法,可以保证每个合数只会被枚举到一次。我们可以证明如下命题:

假设一个合数k=M*p1,p1为其最小的质因子。则k只会在i=M,primeList[j]=p1时被筛掉一次。

首先会在i=M,primeList[j]=p1时被筛掉是显然的。因为p1是k的最小质因子,所以i=M的所有质因子也≥p1。于是j循环在枚举到primeList[j]=p1前不会break,从而一定会在i=M,primeList[j]=p1时被筛掉

其次不会在其他时候被筛掉。否则假设k在i=N, primeList[j]=p1时被筛掉了,此时有k=N*p2。由于p1是k最小的质因子,所以p2 > p1,M > N且p|N。则i=N,j枚举到primeList[j]=p1时(没到primeList[j]=p2)就break了。所以不会有其他时候筛掉k。

同时,不枚举合数倍数的原因也在此:对于一个合数k=M*2*3。只有在枚举到i=M*3时,才会计算到k。若我们枚举合数倍数,则可能会在i=M时,通过M*6计算到k,这样也就造成了多次重复计算了。

综上,Eular筛法可以保证每个合数只会被枚举到一次,时间复杂度为O(n)。当N越大时,其相对于Eratosthenes筛法的优势也就越明显。

Eular质数筛法的更多相关文章

  1. hihocoder 数论二·Eular质数筛法

    数论二·Eular质数筛法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:小Hi,上次我学会了如何检测一个数是否是质数.于是我又有了一个新的问题,我如何去快速得 ...

  2. 【hihocoder 1295】Eular质数筛法

    [题目链接]:http://hihocoder.com/problemset/problem/1295 [题意] [题解] 可以在O(N)的复杂度内求出1..N里面的所有素数; 当然受空间限制,N可能 ...

  3. 51nod 1181 质数中的质数(质数筛法)

    题目链接:51nod 1181 质数中的质数(质数筛法) #include<cstdio> #include<cmath> #include<cstring> #i ...

  4. 51 nod 1181 质数中的质数(质数筛法)

    1181 质数中的质数(质数筛法) 如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的 ...

  5. (数论 欧拉筛法)51NOD 1181 质数中的质数(质数筛法)

    如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用 ...

  6. [51nod 1181] 质数中的质数 - 筛法

    如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用 ...

  7. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  8. 欧拉筛——$O(n)$复杂度的质数筛法

    欧拉筛法可以以\(O(n)\)的时间,空间复杂度求出\(1-n\)范围内的所有质数. 其核心思想是每个合数仅会被其最小的质因数筛去一次. See this website for more detai ...

  9. [51NOD1181]质数中的质数(质数筛法)(欧拉筛)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质 ...

随机推荐

  1. Android开发 控件阴影详情

    如何给控件设置阴影? <com.google.android.material.tabs.TabLayout android:id="@+id/tablayout" andr ...

  2. CentOS7配置Docker镜像加速器

    1. 将默认的配置文件复制出来 cp -n /lib/systemd/system/docker.service /etc/systemd/system/docker.service 2. 将加速器地 ...

  3. 如何在 Apache Flink 中使用 Python API?

    本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink PMC,阿里巴巴高级技术专家 孙金城 分享.重点为大家介绍 Flink Python API 的现状及未来规划, ...

  4. 从微服务治理的角度看RSocket、. Envoy和. Istio

    很多同学看到这个题目,一定会提这样的问题:RSocket是个协议,Envoy是一个 proxy,Istio是service mesh control plane + data plane. 这三种技术 ...

  5. python下使用ElasticSearch

    一 什么是 ElasticSearch Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elas ...

  6. javascript 数组的方法(一)

    栈方法(后进先出) ArrayObj.push():就是向数组末尾添加新的元素,返回的是数组新的长度. ArrayObj.pop():就是向数组中删除数组最后一个元素并且返回该元素.如果数组为空就返回 ...

  7. vuex mutation,action理解

    1. 在store中分别注册mutation和action,action中用commit同步调用mutation来执行修改state,但是在组件中则使用dispatch异步调用action 2. 通俗 ...

  8. IDEA本地SBT项目上传到SVN

    需求 将本地创建的一个项目上到SVN 网上很多从SVN下载到idea,提交.更新.删除等操作. 但是少有从本地上传一个项目到svn管理的案例 本文参考https://blog.csdn.net/cao ...

  9. PAT甲级——【牛客练习题100】

    题目描述 Given N rational numbers in the form "numerator/denominator", you are supposed to cal ...

  10. Nginx简介与基础配置

    何为Nginx? Nginx ("engine x") 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.最初是为了解决C10k的问题,由Igor ...