C. p-binary

Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.

For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).

The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.

For example, if p=0 we can represent 7 as 20+21+22.

And if p=−9 we can represent 7 as one number (24−9).

Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).

Input

The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).

Output

If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.

Examples

input

24 0

output

2

Note

0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).

In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).

In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.

In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.

In the fifth sample case, no representation is possible.

题意

定义p-binary为2^x+p

现在给你一个数x,和一个p。

问你最少用多少个p-binary能构造出x,如果没有输出-1

题解

转化为:

x = 2^x1 + 2^x2 + ... + 2^xn + n*p

首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。

另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。

答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。

代码

#include<bits/stdc++.h>
using namespace std; int Count(int x){
int number=0;
for(;x;x-=x&-x){
number++;
}
return number;
}
int main(){
int n,p,ans=0;
scanf("%d%d",&n,&p);
while(1){
n-=p;
ans++;
int cnt=Count(n);
if(ans>n){
cout<<"-1"<<endl;
return 0;
}
if(cnt<=ans){
cout<<ans<<endl;
return 0;
}
}
}

Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

  2. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products

    链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...

  3. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary

    链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...

  4. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)

    链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...

  5. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things

    链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...

  6. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题

    F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...

  7. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp

    E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...

  8. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法

    B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...

  9. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题

    A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...

  10. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力

    D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...

随机推荐

  1. 记MacOs视频mov与mp4格式转换问题解决

    综述 记录了mov转mp4格式的方法 记录了自己是多蠢 问题背景 这学期选修的<工程英语视听说>课,需要提交一段口语考试视频,于是乎: 带着我的大疆Mavic Mini 和iPad Pro ...

  2. DRF--ModelSerializer

    前戏 在之前我们写序列化器的时候,写的很low,遇到反序列化的有时候还需要重写该字段,用post请求的时候,还要重写create方法,用put请求的时候,还需要重写update方法.总而言之,写起来很 ...

  3. Codeforces Round #603 (Div. 2) F. Economic Difficulties dp

    F. Economic Difficulties An electrical grid in Berland palaces consists of 2 grids: main and reserve ...

  4. java之三元运算符

    逻辑运算 ? m : n;如果逻辑运算为真,则返回m,否则返回n 实例: 判断i,j两个数的大小,如果a较大,则输出1,否则输出0: 找到i,j,k三个数中的最大值: public class Tes ...

  5. IT兄弟连 HTML5教程 HTML和CSS的关系

    HTML是描述网页的标记语言,是将内容放到网页上,虽然HTML本身也自带一些样式功能,通过自身的属性,来实现一些特定的效果,制作出来的只能是一个网页,而不是一个美观的网页.最主要的是在HTML里面,一 ...

  6. PHPexcel导入数据的时候出现object解决方法

    打印其他数据都是正常的,就这个是一个对象 从表格里面看不出问题 后面找到原因是表格里那个名字  李珊珊  周围有空白字符,去掉之后就能正常导入,         解决方法:   找到导入文件的那个方法 ...

  7. KiRaiseException函数逆向

    KiRaiseException函数是记录异常的最后一步,在这之后紧接着就调用KiDispatchException分发异常. 我们在逆向前,先看一下书中的介绍: 1. 概念认知: KiRaiseEx ...

  8. Core源码(四)IEnumerable

    首先我们去core的源码中去找IEnumerable发现并没有,如下 Core中应该是直接使用.net中对IEnumerable的定义 自己实现迭代器 迭代器是通过IEnumerable和IEnume ...

  9. python基础(9):基本数据类型四(set集合)、基础数据类型补充、深浅拷贝

    1. 基础数据类型补充 li = ["李嘉诚", "麻花藤", "⻩海峰", "刘嘉玲"] s = "_&qu ...

  10. SpringBoot(十):SpringBoot整合Memcached

    一.环境准备memcached 1.4.5SpringBoot 1.5.10.RELEASEjava_memcached-release_2.6.6.jarmemcached 1.4.5 window ...