Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题
C. p-binary
Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.
For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).
The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.
For example, if p=0 we can represent 7 as 20+21+22.
And if p=−9 we can represent 7 as one number (24−9).
Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).
Input
The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).
Output
If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.
Examples
input
24 0
output
2
Note
0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).
In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).
In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.
In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.
In the fifth sample case, no representation is possible.
题意
定义p-binary为2^x+p
现在给你一个数x,和一个p。
问你最少用多少个p-binary能构造出x,如果没有输出-1
题解
转化为:
x = 2^x1 + 2^x2 + ... + 2^xn + n*p
首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。
另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。
答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。
代码
#include<bits/stdc++.h>
using namespace std;
int Count(int x){
int number=0;
for(;x;x-=x&-x){
number++;
}
return number;
}
int main(){
int n,p,ans=0;
scanf("%d%d",&n,&p);
while(1){
n-=p;
ans++;
int cnt=Count(n);
if(ans>n){
cout<<"-1"<<endl;
return 0;
}
if(cnt<=ans){
cout<<ans<<endl;
return 0;
}
}
}
Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题的更多相关文章
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products
链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary
链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)
链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things
链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题
F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp
E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法
B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题
A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力
D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...
随机推荐
- OpenvSwitch系列之五 网桥特性功能配置
Open vSwitch系列之一 Open vSwitch诞生 Open vSwitch系列之二 安装指定版本ovs Open vSwitch系列之三 ovs-vsctl命令使用 Open vSwit ...
- Note | 常用指令,工具,教程和经验笔记
目录 图像处理 机器学习和数学 编程环境和工具 写作工具 其他 图像处理 获取图像频域并分解为高低频:https://www.cnblogs.com/RyanXing/p/11630493.html ...
- springboot整合shiro进行权限管理
背景:springboot2.1,shiro1.4:由于目前的小项目没做登录,但是客户又需要加上权限,因此楼主就想到了shiro(这是单独的项目,需要集成后台管理系统) shiro简介 Apache ...
- 使用OC实现单链表:创建、删除、插入、查询、遍历、反转、合并、判断相交、求成环入口
一.概念 链表和数组都是一种线性结构,数组有序存储的,链表是无序存储的. 数组中的每一个元素地址是递增或者递减的关系,链表的每一个节点的地址没有此规律,它们是通过指针的指向连接起来. 链表种类:单链表 ...
- Javascript模块化开发4——Grunt常用模块
一.copy 用于复制文件与目录. grunt-contrib-copy 二.eslint 检测代码的合理性. grunt-eslint 常见参数: 1.quiet 是否只显示errors.默认值fa ...
- STN(Spatial Transformer Networks)
url: https://arxiv.org/abs/1506.02025 year:2015 blog: https://kevinzakka.github.io/2017/01/10/stn-pa ...
- MySQL(7)---存储过程
Mysql(7)---存储过程 存储过程接下来会有三篇相关博客 第一篇存储过程常用语法. 第二篇存储过程中的游标. 第三篇单独讲一个实际开发过程中复杂的真实的案例. 一.概述 1.什么是存储过程 概述 ...
- .net post请求wcf
class Program { static void Main(string[] args) { }); var r = HttpHelper.PostRequest("http://lo ...
- windows server 2008 r2 安装 vs2017 无法进入安装界面问题解决方法
在 windows server 2008 r2 版本操作系统上安装 vs2017 经常出现下载进度条结束后没有任何反应问题,一般是因为安装程序兼容性造成的,解决方案如下: 将 C:\Program ...
- 交互式shell脚本web console
官网:http://web-console.org/ 这个脚本可以实现web下交互,也就是有了这玩意后可以不用反弹shell了. <?php // Web Console v0.9.7 (201 ...