C. p-binary

Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.

For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).

The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.

For example, if p=0 we can represent 7 as 20+21+22.

And if p=−9 we can represent 7 as one number (24−9).

Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).

Input

The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).

Output

If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.

Examples

input

24 0

output

2

Note

0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).

In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).

In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.

In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.

In the fifth sample case, no representation is possible.

题意

定义p-binary为2^x+p

现在给你一个数x,和一个p。

问你最少用多少个p-binary能构造出x,如果没有输出-1

题解

转化为:

x = 2^x1 + 2^x2 + ... + 2^xn + n*p

首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。

另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。

答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。

代码

#include<bits/stdc++.h>
using namespace std; int Count(int x){
int number=0;
for(;x;x-=x&-x){
number++;
}
return number;
}
int main(){
int n,p,ans=0;
scanf("%d%d",&n,&p);
while(1){
n-=p;
ans++;
int cnt=Count(n);
if(ans>n){
cout<<"-1"<<endl;
return 0;
}
if(cnt<=ans){
cout<<ans<<endl;
return 0;
}
}
}

Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

  2. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products

    链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...

  3. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary

    链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...

  4. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)

    链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...

  5. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things

    链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...

  6. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题

    F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...

  7. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp

    E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...

  8. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法

    B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...

  9. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题

    A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...

  10. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力

    D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...

随机推荐

  1. OpenvSwitch系列之五 网桥特性功能配置

    Open vSwitch系列之一 Open vSwitch诞生 Open vSwitch系列之二 安装指定版本ovs Open vSwitch系列之三 ovs-vsctl命令使用 Open vSwit ...

  2. Note | 常用指令,工具,教程和经验笔记

    目录 图像处理 机器学习和数学 编程环境和工具 写作工具 其他 图像处理 获取图像频域并分解为高低频:https://www.cnblogs.com/RyanXing/p/11630493.html ...

  3. springboot整合shiro进行权限管理

    背景:springboot2.1,shiro1.4:由于目前的小项目没做登录,但是客户又需要加上权限,因此楼主就想到了shiro(这是单独的项目,需要集成后台管理系统) shiro简介 Apache ...

  4. 使用OC实现单链表:创建、删除、插入、查询、遍历、反转、合并、判断相交、求成环入口

    一.概念 链表和数组都是一种线性结构,数组有序存储的,链表是无序存储的. 数组中的每一个元素地址是递增或者递减的关系,链表的每一个节点的地址没有此规律,它们是通过指针的指向连接起来. 链表种类:单链表 ...

  5. Javascript模块化开发4——Grunt常用模块

    一.copy 用于复制文件与目录. grunt-contrib-copy 二.eslint 检测代码的合理性. grunt-eslint 常见参数: 1.quiet 是否只显示errors.默认值fa ...

  6. STN(Spatial Transformer Networks)

    url: https://arxiv.org/abs/1506.02025 year:2015 blog: https://kevinzakka.github.io/2017/01/10/stn-pa ...

  7. MySQL(7)---存储过程

    Mysql(7)---存储过程 存储过程接下来会有三篇相关博客 第一篇存储过程常用语法. 第二篇存储过程中的游标. 第三篇单独讲一个实际开发过程中复杂的真实的案例. 一.概述 1.什么是存储过程 概述 ...

  8. .net post请求wcf

    class Program { static void Main(string[] args) { }); var r = HttpHelper.PostRequest("http://lo ...

  9. windows server 2008 r2 安装 vs2017 无法进入安装界面问题解决方法

    在 windows server 2008 r2 版本操作系统上安装 vs2017 经常出现下载进度条结束后没有任何反应问题,一般是因为安装程序兼容性造成的,解决方案如下: 将 C:\Program ...

  10. 交互式shell脚本web console

    官网:http://web-console.org/ 这个脚本可以实现web下交互,也就是有了这玩意后可以不用反弹shell了. <?php // Web Console v0.9.7 (201 ...