Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题
C. p-binary
Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.
For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).
The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.
For example, if p=0 we can represent 7 as 20+21+22.
And if p=−9 we can represent 7 as one number (24−9).
Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).
Input
The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).
Output
If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.
Examples
input
24 0
output
2
Note
0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).
In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).
In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.
In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.
In the fifth sample case, no representation is possible.
题意
定义p-binary为2^x+p
现在给你一个数x,和一个p。
问你最少用多少个p-binary能构造出x,如果没有输出-1
题解
转化为:
x = 2^x1 + 2^x2 + ... + 2^xn + n*p
首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。
另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。
答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。
代码
#include<bits/stdc++.h>
using namespace std;
int Count(int x){
int number=0;
for(;x;x-=x&-x){
number++;
}
return number;
}
int main(){
int n,p,ans=0;
scanf("%d%d",&n,&p);
while(1){
n-=p;
ans++;
int cnt=Count(n);
if(ans>n){
cout<<"-1"<<endl;
return 0;
}
if(cnt<=ans){
cout<<ans<<endl;
return 0;
}
}
}
Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题的更多相关文章
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products
链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary
链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)
链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things
链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题
F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp
E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法
B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题
A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力
D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...
随机推荐
- shell 下
一句话来概括shell shell是一个基于Linux内核和应用程序之间的一个解释器 Shell解释器 /bin/sh /bin/bash 目前多用的是bash /sbin/ ...
- Noip2017Day1T3 逛公园
题目链接 problem 一个有向无重边自环图,设\(D\)为从\(1\)号点走到\(n\)号点的最短距离.问有多少条从\(1\)到\(n\)的路径长度不超过\(D+K\).\(K\)为给定的值,且\ ...
- 终结 finalize() 和对象引用
一.finalize() 方法 1. 为什么要有 finalize() 方法? 假定你的对象(并非使用new)获得了一块“特殊”的内存区域,由于垃圾回收器只知道释放那些经由 new 分配的内存,所以他 ...
- IT兄弟连 HTML5教程 HTML5的曲折发展过程 HTML5的诞生
十年磨一剑,正如我们所看到的一样,HTML5大潮正来势汹汹.但也正如我们所知道的一样,HTML5是一种技术标准,它的语义之美.人性之美.简单之美.实用之美……如同一场革命,它的主要应用场景是浏览器,不 ...
- http服务源码分析
多读go的源码,可以加深对go语言的理解和认知,今天分享一下http相关的源码部分 在不使用第三方库的情况下,我们可以很容易的的用go实现一个http服务, package main import ( ...
- PHP获取网址详情页的内容导出到WORD文件
亲自测试效果一般, css的样式文件获取不到 如果没有特殊的样式 或者是内容里面包括样式的 直接输出有样式的内容 然后导出 这样还是可以的 class word { function start ...
- Java开发桌面程序学习(七)——ImageView设置图片以及jar包读取fxml文件
ImageView设置图片 JavaFx的ImageView,设置图片不能直接通过属性设置,只能通过代码来设置 ImageView设置图片 首先,我们让fxml对应的那个controller的java ...
- VS Code 快捷键 && 常用插件
常用插件 分类 插件名称 说明 开发 C# C#语言 C# Extensions C#扩展功能(添加类,接口,智能提示) C# XML Documentation Comments 代码添加注释 ...
- 深入C#并行编程(2) -- 使用线程
一.可以使用位于命名空间System.Threading中的Thrad类开启线程: //声明一个新的线程 Thread myThread = new Thread(LoopFunc); //传递一个T ...
- SQLPrompt8.2 安装之后找不到激活入口
如果你发现是这样的,找不到像其他人说的serial number这个选项,不要惊慌.. 首先你得先断网,然后再打开sql客户端,点击Manage License ,然后你会看到 activate 这个 ...