C. p-binary

Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.

For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).

The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.

For example, if p=0 we can represent 7 as 20+21+22.

And if p=−9 we can represent 7 as one number (24−9).

Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).

Input

The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).

Output

If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.

Examples

input

24 0

output

2

Note

0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).

In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).

In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.

In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.

In the fifth sample case, no representation is possible.

题意

定义p-binary为2^x+p

现在给你一个数x,和一个p。

问你最少用多少个p-binary能构造出x,如果没有输出-1

题解

转化为:

x = 2^x1 + 2^x2 + ... + 2^xn + n*p

首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。

另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。

答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。

代码

#include<bits/stdc++.h>
using namespace std; int Count(int x){
int number=0;
for(;x;x-=x&-x){
number++;
}
return number;
}
int main(){
int n,p,ans=0;
scanf("%d%d",&n,&p);
while(1){
n-=p;
ans++;
int cnt=Count(n);
if(ans>n){
cout<<"-1"<<endl;
return 0;
}
if(cnt<=ans){
cout<<ans<<endl;
return 0;
}
}
}

Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

  2. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products

    链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...

  3. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary

    链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...

  4. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)

    链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...

  5. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things

    链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...

  6. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题

    F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...

  7. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp

    E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...

  8. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法

    B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...

  9. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题

    A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...

  10. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力

    D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...

随机推荐

  1. shell 下

    一句话来概括shell    shell是一个基于Linux内核和应用程序之间的一个解释器 Shell解释器    /bin/sh    /bin/bash  目前多用的是bash    /sbin/ ...

  2. Noip2017Day1T3 逛公园

    题目链接 problem 一个有向无重边自环图,设\(D\)为从\(1\)号点走到\(n\)号点的最短距离.问有多少条从\(1\)到\(n\)的路径长度不超过\(D+K\).\(K\)为给定的值,且\ ...

  3. 终结 finalize() 和对象引用

    一.finalize() 方法 1. 为什么要有 finalize() 方法? 假定你的对象(并非使用new)获得了一块“特殊”的内存区域,由于垃圾回收器只知道释放那些经由 new 分配的内存,所以他 ...

  4. IT兄弟连 HTML5教程 HTML5的曲折发展过程 HTML5的诞生

    十年磨一剑,正如我们所看到的一样,HTML5大潮正来势汹汹.但也正如我们所知道的一样,HTML5是一种技术标准,它的语义之美.人性之美.简单之美.实用之美……如同一场革命,它的主要应用场景是浏览器,不 ...

  5. http服务源码分析

    多读go的源码,可以加深对go语言的理解和认知,今天分享一下http相关的源码部分 在不使用第三方库的情况下,我们可以很容易的的用go实现一个http服务, package main import ( ...

  6. PHP获取网址详情页的内容导出到WORD文件

    亲自测试效果一般, css的样式文件获取不到 如果没有特殊的样式  或者是内容里面包括样式的  直接输出有样式的内容 然后导出  这样还是可以的 class word { function start ...

  7. Java开发桌面程序学习(七)——ImageView设置图片以及jar包读取fxml文件

    ImageView设置图片 JavaFx的ImageView,设置图片不能直接通过属性设置,只能通过代码来设置 ImageView设置图片 首先,我们让fxml对应的那个controller的java ...

  8. VS Code 快捷键 && 常用插件

    常用插件    分类 插件名称 说明 开发 C# C#语言 C# Extensions C#扩展功能(添加类,接口,智能提示) C# XML Documentation Comments 代码添加注释 ...

  9. 深入C#并行编程(2) -- 使用线程

    一.可以使用位于命名空间System.Threading中的Thrad类开启线程: //声明一个新的线程 Thread myThread = new Thread(LoopFunc); //传递一个T ...

  10. SQLPrompt8.2 安装之后找不到激活入口

    如果你发现是这样的,找不到像其他人说的serial number这个选项,不要惊慌.. 首先你得先断网,然后再打开sql客户端,点击Manage License ,然后你会看到 activate 这个 ...