Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题
C. p-binary
Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.
For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).
The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.
For example, if p=0 we can represent 7 as 20+21+22.
And if p=−9 we can represent 7 as one number (24−9).
Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).
Input
The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).
Output
If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.
Examples
input
24 0
output
2
Note
0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).
In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).
In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.
In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.
In the fifth sample case, no representation is possible.
题意
定义p-binary为2^x+p
现在给你一个数x,和一个p。
问你最少用多少个p-binary能构造出x,如果没有输出-1
题解
转化为:
x = 2^x1 + 2^x2 + ... + 2^xn + n*p
首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。
另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。
答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。
代码
#include<bits/stdc++.h>
using namespace std;
int Count(int x){
int number=0;
for(;x;x-=x&-x){
number++;
}
return number;
}
int main(){
int n,p,ans=0;
scanf("%d%d",&n,&p);
while(1){
n-=p;
ans++;
int cnt=Count(n);
if(ans>n){
cout<<"-1"<<endl;
return 0;
}
if(cnt<=ans){
cout<<ans<<endl;
return 0;
}
}
}
Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题的更多相关文章
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products
链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary
链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)
链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things
链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题
F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp
E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法
B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题
A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力
D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...
随机推荐
- 记MacOs视频mov与mp4格式转换问题解决
综述 记录了mov转mp4格式的方法 记录了自己是多蠢 问题背景 这学期选修的<工程英语视听说>课,需要提交一段口语考试视频,于是乎: 带着我的大疆Mavic Mini 和iPad Pro ...
- DRF--ModelSerializer
前戏 在之前我们写序列化器的时候,写的很low,遇到反序列化的有时候还需要重写该字段,用post请求的时候,还要重写create方法,用put请求的时候,还需要重写update方法.总而言之,写起来很 ...
- Codeforces Round #603 (Div. 2) F. Economic Difficulties dp
F. Economic Difficulties An electrical grid in Berland palaces consists of 2 grids: main and reserve ...
- java之三元运算符
逻辑运算 ? m : n;如果逻辑运算为真,则返回m,否则返回n 实例: 判断i,j两个数的大小,如果a较大,则输出1,否则输出0: 找到i,j,k三个数中的最大值: public class Tes ...
- IT兄弟连 HTML5教程 HTML和CSS的关系
HTML是描述网页的标记语言,是将内容放到网页上,虽然HTML本身也自带一些样式功能,通过自身的属性,来实现一些特定的效果,制作出来的只能是一个网页,而不是一个美观的网页.最主要的是在HTML里面,一 ...
- PHPexcel导入数据的时候出现object解决方法
打印其他数据都是正常的,就这个是一个对象 从表格里面看不出问题 后面找到原因是表格里那个名字 李珊珊 周围有空白字符,去掉之后就能正常导入, 解决方法: 找到导入文件的那个方法 ...
- KiRaiseException函数逆向
KiRaiseException函数是记录异常的最后一步,在这之后紧接着就调用KiDispatchException分发异常. 我们在逆向前,先看一下书中的介绍: 1. 概念认知: KiRaiseEx ...
- Core源码(四)IEnumerable
首先我们去core的源码中去找IEnumerable发现并没有,如下 Core中应该是直接使用.net中对IEnumerable的定义 自己实现迭代器 迭代器是通过IEnumerable和IEnume ...
- python基础(9):基本数据类型四(set集合)、基础数据类型补充、深浅拷贝
1. 基础数据类型补充 li = ["李嘉诚", "麻花藤", "⻩海峰", "刘嘉玲"] s = "_&qu ...
- SpringBoot(十):SpringBoot整合Memcached
一.环境准备memcached 1.4.5SpringBoot 1.5.10.RELEASEjava_memcached-release_2.6.6.jarmemcached 1.4.5 window ...