Python代码如下

import pandas as pd

# 读取数据
data = pd.read_csv('data_row.csv') # 检查异常值
def detect_outliers(data):
outliers = []
for col in data.columns:
q1 = data[col].quantile(0.25)
q3 = data[col].quantile(0.75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
outliers.extend(data[(data[col] < lower_bound) | (data[col] > upper_bound)].index)
return list(set(outliers)) outliers = detect_outliers(data)
print("异常数据数量:", len(outliers))
# 处理异常值
data.drop(outliers, inplace=True) # 保存清洗后的数据
data.to_csv('clean_data_row.csv', index=False)

下面我们修改成C#代码

创建控制台程序,Nuget安装 CsvHelper 和 pythonnet

public class Program
{
const string PathToPythonDir = "D:\\Python311";
const string DllOfPython = "python311.dll"; static void Main(string[] args)
{
// 数据清洗
CleanData();
}

/// <summary>
/// 数据清洗
/// </summary>
static void CleanData()
{
var originDatas = ReadCsvWithCsvHelper("data_row.csv"); var outliers = DetectOutliers(originDatas); var outlierHashset = new HashSet<int>(outliers); // 清洗过后的数据
var cleanDatas = originDatas.Where((r, index) => !outlierHashset.Contains(index)).ToList(); try
{
Runtime.PythonDLL = Path.Combine(PathToPythonDir, DllOfPython); PythonEngine.Initialize();
using (Py.GIL())
{
dynamic pd = Py.Import("pandas");
dynamic np = Py.Import("numpy");
dynamic plt = Py.Import("matplotlib.pyplot");
dynamic fft = Py.Import("scipy.fftpack"); dynamic oData = np.array(originDatas.ToArray());
int oDataLength = oData.__len__();
dynamic data = np.array(cleanDatas.ToArray());
int dataLength = data.__len__(); // 绘制原始数据图和清洗后数据图
plt.figure(figsize: new dynamic[] { 12, 6 }); // 原始数据图
plt.subplot(1, 2, 1);
plt.plot(np.arange(oDataLength), oData);
plt.title("Original Datas"); // 清洗后数据图
plt.subplot(1, 2, 2);
plt.plot(np.arange(dataLength), data);
plt.title("Clean Datas"); // 布局调整,防止重叠
plt.tight_layout();
// 显示图表
plt.show();
}
}
catch (Exception e)
{
Console.WriteLine("报错了:" + e.Message + "\r\n" + e.StackTrace);
}
} /// <summary>
/// 检测异常值
/// </summary>
/// <param name="datas">原始数据集合</param>
/// <returns>返回异常值在集合中的索引</returns>
static List<int> DetectOutliers(List<double[]> datas)
{
List<int> outliers = new List<int>();
var first = datas.First();
for (int i = 0; i < first.Length; i++)
{
var values = datas.AsEnumerable().Select((row, index) => Tuple.Create(row[i], index)).ToArray(); double q1 = Enumerable.OrderBy(values, x => x.Item1).ElementAt((int)(values.Length * 0.25)).Item1;
double q3 = Enumerable.OrderBy(values, x => x.Item1).ElementAt((int)(values.Length * 0.75)).Item1;
double iqr = q3 - q1;
double lowerBound = q1 - 1.5 * iqr;
double upperBound = q3 + 1.5 * iqr; outliers.AddRange(values.AsEnumerable()
.Where(row => row.Item1 < lowerBound || row.Item1 > upperBound)
.Select(row => row.Item2));
}
return outliers.Distinct().ToList();
} /// <summary>
/// 读取CSV数据
/// </summary>
/// <param name="filePath">文件路径</param>
/// <returns>文件中数据集合,都是double类型</returns>
static List<double[]> ReadCsvWithCsvHelper(string filePath)
{
using (var reader = new StreamReader(filePath))
using (var csv = new CsvReader(reader, CultureInfo.InvariantCulture))
{
var result = new List<double[]>();
// 如果你的CSV文件有标题行,可以调用ReadHeader来读取它们
csv.Read();
csv.ReadHeader();
while (csv.Read())
{
result.Add(new double[] {
csv.GetField<double>(0),
csv.GetField<double>(1),
csv.GetField<double>(2),
});
}
return result;
}
}
}

以下是运行后结果,左边是原始数据折线图,右边是清洗后数据折线图

源代码:https://gitee.com/Karl_Albright/csharp-demo/tree/master/PythonnetDemo/PythonnetClearData

抽稀算法

def down_sampling(sig,factor=2, axis=0):
'''
降采样
Inputs:
sig --- numpy array, 信号数据数组
factor --- int, 降采样倍率
axis --- int, 沿着哪个轴进行降采样
'''
Temp=[':']*sig.ndim
Temp[axis]='::'+str(factor)
return eval('sig['+','.join(Temp)+']')
/// <summary>
/// 降采样,其实就是抽稀算法
/// </summary>
static List<double[]> DownSampling(int factor = 2, int axis = 0)
{
if (axis != 0 && axis != 1)
throw new ArgumentException("Axis must be 0 or 1 for a 2D array."); var datas = ReadCsvWithCsvHelper("clean_data_row3.csv"); int dim0 = datas.Count;
var first = datas.First();
int dim1 = first.Length; var result = new List<double[]>();
if (axis == 0)
{
var xAxis = dim0 / factor;
var yAxis = dim1;
for (int i = 0; i < xAxis; i++)
{
result.Add(datas[i * factor]);
}
}
else if (axis == 1)
{
var xAxis = dim0;
var yAxis = dim1 / factor;
var item = new double[yAxis];
for (int i = 0; i < xAxis; i++)
{
var deviceData = datas[i];
for (int j = 0; j < yAxis; j++)
{
item[j] = deviceData[j * factor];
}
result.Add(item);
}
}
return result;
}

源代码:https://gitee.com/Karl_Albright/csharp-demo/tree/master/PythonnetDemo/PythonnetClearData

C# pythonnet(1)_传感器数据清洗算法的更多相关文章

  1. java数据结构_笔记(5)_图的算法

    图的算法 1 图的遍历图的遍历就是从图中某个顶点出发,按某种方法对图中所有顶点访问且仅访问一次.遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础. 2 深度优先遍历从图中某个顶点V 出发 ...

  2. 『算法设计_伪代码』贪心算法_最短路径Dijkstra算法

    Dijkstra算法实际上是一个贪婪算法(Greedy algorithm).因为该算法总是试图优先访问每一步循环中距离起始点最近的下一个结点.Dijkstra算法的过程如下图所示. 初始化 给定图中 ...

  3. Homekit_温湿度_人体红外_光强_传感器

    市面上大多数,传感器产品多是简单的单个传感器进行售卖,这里我推荐一款四合一的产品,使用Homekit进行控制. 前置需求: 苹果手机一台 四合一传感器一个 USB数据线一根 介绍: 1.外观上是一个小 ...

  4. 计量经济与时间序列_自协方差(AutoCovariance)算法解析(Python)

    1 样本的自协方差函数的通式如下: 2 其实,后面要计算的自相关函数也可以用自协方差来表示: # @author: "Thomas.Shih" # @date: 2018/3/5 ...

  5. Partition算法剖析

    博文链接:http://haoyuanliu.github.io/2016/12/18/Partition%E7%AE%97%E6%B3%95%E5%89%96%E6%9E%90/ 对,我是来骗访问量 ...

  6. 关于开源中文搜索引擎架构coreseek中算法详解

     Coreseek 是一款中文全文检索/搜索软件,以GPLv2许可协议开源发布,基于Sphinx研发并独立发布,专攻中文搜索和信息处理领域,适用于行业/垂直搜索.论坛/站内搜索.数据库搜索.文档/文献 ...

  7. 二分图的最大匹配——最大流EK算法

    序: 既然是个图,并且求边数的最大值.那么这就可以转化为网络流的求最大流问题. 只需要将源点与其中一子集的所有节点相连,汇点与另一子集的所有节点相连,将所有弧的流量限制置为1,那么最大流 == 最大匹 ...

  8. [Contiki系列论文之1]Contiki——为微传感器网络而生的轻量级的、灵活的操作系统

    说明:本系列文章翻译自Contiki之父Adam Dunkels经典论文,版权归原作者全部. Contiki是由Adam Dunkels及其团队开发的系统,研读其论文是对深入理解Contiki系统的最 ...

  9. iOS 神秘而又强大的传感器系统 (附demo)

    iOS中的各种传感器: 随着科技的发展,机器感知人的行为!Goole的无人驾驶汽车到李彦宏的无人驾汽车,都带入了各种计算及传感. 为了研究自然现象和制造劳动工具,人类必须了解外界的各类信息.了解外界信 ...

  10. Google Cardboard的九轴融合算法——基于李群的扩展卡尔曼滤波

    Google Cardboard的九轴融合算法 --基于李群的扩展卡尔曼滤波 极品巧克力 前言 九轴融合算法是指通过融合IMU中的加速度计(三轴).陀螺仪(三轴).磁场计(三轴),来获取物体姿态的方法 ...

随机推荐

  1. dotnet 6 使用 HttpWebRequest 进行 POST 文件将占用大量内存

    我有用户给我报告一个内存不足的问题,经过了调查,找到了依然是使用已经被标记过时的 HttpWebRequest 进行文件推送,推送过程中,由于 System.Net.RequestStream 将会完 ...

  2. SQL server 表字段扩展设计

    一.扩展字段表 一个表的字段可能并非一成不变,系统的运行.需求的变化等客观条件可能会需要增加其他字段,如何在不直接修改表设计的前提下满足需求呢?该扩展字段表的思想就是将列设计转化为行设计,字段的增加表 ...

  3. 在网页上直接运行Win11,5秒内用AI克隆自己的声音 | 蛮三刀酱的Github周刊第二期

    大家好,这里是每周更新的Github精彩分享周刊,我是每周都在搬砖的蛮三刀酱. 我会从Github热门趋势榜里选出 高质量.有趣,牛B 的开源项目进行分享. 1. PowerShell:不止于Wind ...

  4. 基于三菱Q系列cc-Link的立体仓库控制系统

    系统说明: 方案选择: 工艺流程: 触摸屏设计: 程序设计:采用SFC进行编程,结构清晰,逻辑明了 本文章为学习记录,水平有限,望各路大佬们轻喷!!!    转载请注明出处!!!

  5. WPF 稳定的全屏化窗口方法

    本文来告诉大家在 WPF 中,设置窗口全屏化的一个稳定的设置方法.在设置窗口全屏的时候,经常遇到的问题就是应用程序虽然设置最大化加无边框,但是此方式经常会有任务栏冒出来,或者说窗口没有贴屏幕的边.本文 ...

  6. pageoffice在线打开word文件加盖电子印章

    一.加盖印章的 js 方法 js方法 二.常见使用场景 1.常规盖章.弹出用户名.密码输入框,选择对应印章. 点击盖章按钮弹出用户名密码登录框,登录以后显示选择电子印章. document.getEl ...

  7. HC32L110(六) AS06-VTB07H V5.0测试板AT指令固件

    目录 HC32L110(一) HC32L110芯片介绍和Win10下的烧录 HC32L110(二) HC32L110在Ubuntu下的烧录 HC32L110(三) HC32L110的GCC工具链和VS ...

  8. mysql-8.4.0解压版安装记录

    MySQL 8.4.0解压版安装记录 这几天,安装最新版mysql 8.4的时候,遇到了不少问题,网上的教程大多数都是旧版本的,也安装不成功. 参考了大量教程后,经过自己的摸索终于装好了,这里记录一下 ...

  9. Chart.js (v2.9.4)概要介绍

    chart.js是一个非常优秀的开源图表插件,扩展非常灵活,同时也提供了大量的钩子函数,给与用户添加自定义插件,实现个性化的需求. 具体的优势特点,这里不详述,网上大把资料,现开始正式深入了解这个插件 ...

  10. Redis知识网络

    Redis知识网络 作者:运维君莫笑 链接:https://www.zhihu.com/question/470465324/answer/2006650219 Redis为什么这么快? 根据官方数据 ...