\(a ^ n \bmod p\)


\(a, p, n \leq 10^9\)

最普通的二进制拆分

#define LL long long
LL qpow(LL a, LL n, LL p)
{
LL ans = 1;
for (; n; n >>= 1, a = a * a % p)
if (n & 1)
ans = ans * a % p;
return ans % p;
}

\(a, p, n \leq 10^{14}\)

底数变大了,直接做\(a * a\)会爆longlong,需要用类似快速幂的方法做乘法

#define LL long long
LL mul(LL a, LL n, LL p)
{
LL ans = 0;
for (; n; n >>= 1, a = (a << 1) % p)
if (n & 1)
ans = (ans + a) % p;
return ans % p;
}
LL qpow(LL a, LL n, LL p)
{
LL ans = 1;
for (; n; n >>= 1, a = mul(a, a, p))
if (n & 1)
ans = mul(ans, a, p) % p;
return ans % p;
}

\(a, p \leq 10^{14}, \ n \leq 10 ^ {100}\) \((a \perp p)\)

初看数据范围,出题人在搞事情。其实只是用了一个欧拉定理的结论:

\[a^n \equiv a^{n \bmod \varphi(p)} \pmod p\ \ \ (a \perp p)
\]

\(O(\sqrt{p})\)算\(\varphi(p)\),n先读字符串然后按快读的方式处理即可。


\(a, p \leq 10^{14}, \ n \leq 10 ^ {100}\)

\(a, p\)互质的条件去掉了怎么办?当\(n \leq \varphi(p)\)时可以直接算,否则用到以下结论:

\[a^n \equiv a^{n \bmod \varphi(p) + \varphi(p)} \pmod p
\]

noip复习——快速幂的更多相关文章

  1. 51Nod 1046 A^B Mod C(日常复习快速幂)

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...

  2. 51Nod 1004 n^n的末位数字(日常复习快速幂,莫名的有毒,卡mod值)

    1004 n^n的末位数字 题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数N,输出 ...

  3. 【数论】 快速幂&&矩阵快速幂

    首先复习快速幂 #include<bits/stdc++.h> using namespace std; long long power(long long a,long long b,l ...

  4. NOIP 2013提高组day 1 T 1转圈游戏 快速幂

    描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推 ...

  5. 2018.11.08 NOIP模拟 景点(倍增+矩阵快速幂优化dp)

    传送门 首先按照题意构造出转移矩阵. 然后可以矩阵快速幂求出答案. 但是直接做是O(n3qlogm)O(n^3qlogm)O(n3qlogm)的会TTT掉. 观察要求的东西发现我们只关系一行的答案. ...

  6. 2018.10.19 NOIP训练 桌子(快速幂优化dp)

    传送门 勉强算一道dp好题. 显然第kkk列和第k+nk+nk+n列放的棋子数是相同的. 因此只需要统计出前nnn列的选法数. 对于前mmm%nnn列,一共有(m−1)/n+1(m-1)/n+1(m− ...

  7. 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)

    传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...

  8. 2018.10.09 NOIP模拟 路途(递推+矩阵快速幂优化)

    传送门 签到题.(考试的时候写挂爆0) 令AiA_iAi​表示邻接矩阵的iii次幂. 于是就是求Al+Al+1+...+ArA_l+A_{l+1}+...+A_rAl​+Al+1​+...+Ar​. ...

  9. 2018.08.30 NOIP模拟 kfib(矩阵快速幂+exgcd)

    [输入] 一行两个整数 n P [输出] 从小到大输出可能的 k,若不存在,输出 None [样例输入 1] 5 5 [样例输出] 2 [样例解释] f[0] = 2 f[1] = 2 f[2] = ...

随机推荐

  1. p46_IPv4地址

    IP地址:全世界唯一的32位/4字节标识符,标识路由器主机的接口. IP地址::={<网络号>,<主机号>} 图中有6个子网 比如222.1.3.0是网络号,3是主机号,222 ...

  2. vue 修改路由

    直接放代码: this.$router.push({ path: "/login" });

  3. NACOS安装和配置

    安装包nacos-server-1.1.4.tar.gz 环境 JDK1.8 上传及解压 [root@centos7- ~ ]# mkdir -p /cslc/nacos #通过SFTP将安装包上传至 ...

  4. animation动画汇总(一阶段项目)

    animation 属性 动画属性: 1.animation-name:规定需要绑定到选择器的 keyframe 名称. 2.animation-duration:规定完成动画所花费的时间,以秒或毫秒 ...

  5. dubbo泛化调用 小demo

    前两天刚好有个同事来问是否用过 dubbo泛化 调用,不需要通过指定配置.第一次听到的时候,还是有点懵,但觉得有意思,可以学点东西. 立马百度了,找了demo,这篇比较容易上手(http://www. ...

  6. Python os.removedirs() 方法

    概述 os.removedirs() 方法用于递归删除目录.像rmdir(), 如果子文件夹成功删除, removedirs()才尝试它们的父文件夹,直到抛出一个error(它基本上被忽略,因为它一般 ...

  7. luogu P3409 值日班长值周班长 exgcd

    LINK:值日班长值周班长 题目描述非常垃圾. 题意:一周5天 每周有一个值周班长 每天有一个值日班长 值日班长日换 值周班长周换. 共n个值日班长 m个值周班长 A是第p个值日班长 B是第q个值日班 ...

  8. MySQL 笔记 —— 中文乱码解决、修改mysql服务端编码

    https://blog.csdn.net/qq_19865749/article/details/79235422

  9. RDD和Dataframe相互转换

    参考:https://www.cnblogs.com/starwater/p/6841807.html 在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使 ...

  10. 文件操作之File 和 Path

    转载:https://blog.csdn.net/u010889616/article/details/52694061 Java7中文件IO发生了很大的变化,专门引入了很多新的类: import j ...