题目:给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内)。(N<=10000000,M<=100000)

解法:1.欧拉筛O(n),数组近乎100KB;2.(我这题copy了数据范围肯定是有原因滴......)欧拉函数判断素数O(m log n),m 比 n 小啊,可以分解质因数求欧拉函数。

2种写法我在这篇博文里都有写:【poj 2407】Relatives(数论--欧拉函数 模版题)

下面的代码是第一种方法的,

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=10000000;
8 int pr=0;
9 int prim[700000],isprime[N+10];
10
11 void get_prime()
12 {
13 memset(isprime,-1,sizeof(isprime));
14 isprime[1]=0;//
15 for (int i=2;i<=N;i++)
16 {
17 if (isprime[i]==-1) prim[++pr]=i;
18 for (int j=1;j<=pr && prim[j]*i<=N;j++)
19 {
20 isprime[prim[j]*i]=0;
21 if (i%prim[j]==0) break;
22 }
23 }
24 }
25 int main()
26 {
27 get_prime();
28 int n,m,x;
29 scanf("%d%d",&n,&m);
30 while (m--)
31 {
32 scanf("%d",&x);
33 if (isprime[x]==-1) printf("Yes\n");
34 else printf("No\n");
35 }
36 return 0;
37 }

【洛谷 p3383】模板-线性筛素数(数论)的更多相关文章

  1. [洛谷P3383][模板]线性筛素数-欧拉筛法

    Description 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) Input&Output Input 第一行包含两个正整数N.M,分别表示查询的 ...

  2. 【埃氏筛】洛谷P3383埃氏筛模板

    思路: 如果我们要筛出 [1, n] 内的所有素数,使用 [1, √n] 内的素数去筛就可以了 设bool型数组 a,a[i] 表示 i 是否被某个素数筛过 从 2 开始枚举每个数 i: 若 a[i] ...

  3. 洛谷P3383 【模板】线性筛素数

    P3383 [模板]线性筛素数 256通过 579提交 题目提供者HansBug 标签 难度普及- 提交  讨论  题解 最新讨论 Too many or Too few lines 样例解释有问题 ...

  4. 洛谷 P3383 【模板】线性筛素数

    P3383 [模板]线性筛素数 题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示查询的范 ...

  5. 洛谷 P3383 【模板】线性筛素数-线性筛素数(欧拉筛素数)O(n)基础题贴个板子备忘

    P3383 [模板]线性筛素数 题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示查询的范 ...

  6. 欧拉函数O(sqrt(n))与欧拉线性筛素数O(n)总结

    欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ...

  7. leetcode 204. Count Primes(线性筛素数)

    Description: Count the number of prime numbers less than a non-negative number, n. 题解:就是线性筛素数的模板题. c ...

  8. ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)

    题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...

  9. [Luogu]A%BProblem——线性筛素数与前缀和

    题目描述 题目背景 题目名称是吸引你点进来的[你怎么知道的] 实际上该题还是很水的[有种不祥的预感..] 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m接下来n行, ...

随机推荐

  1. ubuntu环境下搭建Hadoop集群中必须需要注意的问题

    博主安装的hadoop是3.1.3这里是按照厦门大学那个博客安装的,在安装与启动过程中,费了不少事,特此记录一下问题. 安装的连接: 安装环境:http://dblab.xmu.edu.cn/blog ...

  2. 无限重置IDE过期时间插件 亲测可以使用

    相信破解过IDEA的小伙伴,都知道jetbrains-agent这个工具,没错,就是那个直接拖入到开发工具界面,一键搞定,so easy的破解工具!这个工具目前已经停止更新了,尽管还有很多小伙伴在使用 ...

  3. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  4. CTFHub - Web(二)

    目录遍历: 法一: 依次查看目录即可: 法二: 利用脚本:  #!/usr/bin/python3  # -*- coding: utf-8 -*-  # --author:valecalida-- ...

  5. mysql—if函数

    在mysql中if()函数的具体语法如下:IF(expr1,expr2,expr3),如果expr1的值为true,则返回expr2的值,如果expr1的值为false,则返回expr3的值. 开始实 ...

  6. SwiftUI 中一些和响应式状态有关的属性包装器的用途

    SwiftUI 借鉴了 React 等 UI 框架的概念,通过 state 的变化,对 View 进行响应式的渲染.主要通过 @State, @StateObject, @ObservedObject ...

  7. 对 js加密数据进行爬取和解密

    对 js加密数据进行爬取和解密 分析: 爬取的数据是动态加载 并且我们进行了抓包工具的全局搜索,没有查找到结果 意味着:爬取的数据从服务端请求到的是加密的密文数据 页面每10s刷新一次,刷新后发现数据 ...

  8. 【pytest】(十二)参数化测试用例中的setup和teardown要怎么写?

    还是一篇关于pytest的fixture在实际使用场景的分享. fixture我用来最多的就是写setup跟teardown了,那么现在有一个用例是测试一个列表接口,参数化了不同的状态值传参,来进行测 ...

  9. C++ unordered_map/unordered_set 自定义键类型

    1. unordered_map 和 unordered_set template < class Key, // unordered_map::key_type class T, // uno ...

  10. 前端面试之JavaScript中的闭包!

    前端面试之JavaScript中的闭包! 闭包 闭包( closure )指有权访问另一个函数作用域中变量的函数. ----- JavaScript 高级程序设计 闭包其实可以理解为是一个函数 简单理 ...