Python数据科学手册-Pandas:累计与分组
简单累计功能
Series sum() 返回一个 统计值
DataFrame sum。默认对每列进行统计
设置axis参数,对每一行 进行统计
describe()可以计算每一列的若干常用统计值。
获取seaborn planets数据
github: https://github.com/mwaskom/seaborn-data.git
windows: 放在用户目录下(在线下载卡。超时。)
dropna()丢弃有缺失值的行。
Pandas累计方法
Aggregation | Description |
---|---|
count() | Total number of items |
first(), last() | First and last item |
mean(), median() | Mean and median |
min(), max() | Minimum and maximum |
std(), var() | Standard deviation and variance |
mad() | Mean absolute deviation |
prod() | Product of all items |
sum() | Sum of all items |
Groupy: 分割、应用和组合
split、 apply、combine
groupby()方法传递参数列名。返回值是个DataFrameGroupBy对象。
GroupBy对象。
可以看成是DataFrame的集合。
常用的操作:aggregate(累计)、filter(过滤)、transform(转换)、apply(应用)
1)按列取值
2)按组迭代,返回的每一组都是Series 或 DataFrame
3) 调用方法
累计 过滤 转换 应用
1)累计 aggregate
2) 过滤 filter
- 转换 transform
累计操作 对组内全量数据缩减的结果。 而 转换 操作 会返回一个新的全量数据
4)apply()
输入一个DataFrame 对象,f返回一个Pandas对象 或 单个数值。 组合操作会 适应返回结果类型。
设置分割的键
1)将列表、数组、Series或 索引作为分组键
2)用字典或 Series将索引 映射到 分组名称
3)任意python函数,函数映射到索引
分组案例
以十年为一个时间段。
加上s
这里 groupby 俩个值。懵逼了。
数据透视表
groupby 是探索数据内部的关联性 。
数据透视表: pivottable 是一种类似的操作方法。常见与Excel与类似的表格 应用中。
数据透视表 将每一列 数据作为输入, 输出将数据不断细分 成多个维度累计信息的 二维数据表。
是多维的GroupBy累计操作。
泰坦尼克号 乘客 数据
1)按照性别 、最终生还状态 进行分组
2)进一步 探索,不同性别与船舱 等级的生还情况。
3)上面这个是不是感觉很复杂。使用pivot_table 就会简单
一等舱的女性 生还率最高。 三等舱的生还率 最低
好好努力
4)再把年龄也加进去。 多级数据透视表
5)其他选项
Python数据科学手册-Pandas:累计与分组的更多相关文章
- Python数据科学手册-Pandas:向量化字符串操作、时间序列
向量化字符串操作 Series 和 Index对象 的str属性. 可以正确的处理缺失值 方法列表 正则表达式. Method Description match() Call re.match() ...
- Python数据科学手册-Pandas:数值运算方法
Numpy 的基本能力之一是快速对每个元素进行运算 Pandas 继承了Numpy的功能,也实现了一些高效技巧. 对于1元运算,(函数,三角函数)保留索引和列标签 对于2元运算,(加法,乘法),Pan ...
- Python数据科学手册-Pandas:层级索引
一维数据 和 二维数据 分别使用Series 和 DataFrame 对象存储. 多维数据:数据索引 超过一俩个 键. Pandas提供了Panel 和 Panel4D对象 解决三维数据和四维数据. ...
- Python数据科学手册-Pandas:数据取值与选择
Numpy数组取值 切片[:,1:5], 掩码操作arr[arr>0], 花哨的索引 arr[0, [1,5]],Pandas的操作类似 Series数据选择方法 Series对象与一维Nump ...
- Python数据科学手册-Pandas数据处理之简介
Pandas是在Numpy基础上建立的新程序库,提供了一种高效的DataFrame数据结构 本质是带行标签 和 列标签.支持相同类型数据和缺失值的 多维数组 增强版的Numpy结构化数组 行和列不在只 ...
- Python数据科学手册-Pandas:合并数据集
将不同的数据源进行合并 , 类似数据库 join merge . 工具函数 concat / append pd.concat() 简易合并 合并高维数据 默认按行合并. axis=0 ,试试 axi ...
- 100天搞定机器学习|day45-53 推荐一本豆瓣评分9.3的书:《Python数据科学手册》
<Python数据科学手册>共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供nda ...
- Python数据科学手册
Python数据科学手册(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1KurSdjNWiwMac3o3iLrzBg 提取码:qogy 复制这段内容后打开百度网盘手 ...
- Matplotlib 使用 - 《Python 数据科学手册》学习笔记
一.引入 import matplotlib as mpl import matplotlib.pyplot as plt 二.配置 1.画图接口 Matplotlib 有两种画图接口: (1)一个是 ...
随机推荐
- 9.4 苹果macOS电脑如何安装Android开发环境(Android Studio)
下载 来到官方下载界面(需要 科 学 上 网),下载最新版本,点击Download,然后同意协议,在点击下载:如果平常看文档,可以点击Google中国Android开发者官网(部分用户可能也需要科 学 ...
- 在Linux虚拟机中添加多个固定ip地址
1.右键点击设置2.点击添加,再点击网络适配器,最后点击完成.3.选择完成后的网络适配器,选择仅主机模式.4.用roott身份登录,用nmtui进行设置 systemctl start Network ...
- 从零开始Blazor Server(1)--项目搭建
项目介绍 本次项目准备搭建一个使用Furion框架,Blazor的UI使用BootstrapBlazor.数据库ORM使用Freesql的后台管理系统. 目前的规划是实现简单的注册,登录.增加管理员跟 ...
- 钡铼BL102分布式IO系统如何应用于锂电池行业
近年来,全球新能源汽车的蓬勃发展促进了锂电池行业的发展.随着锂电池标准化程度的提高,电池和模块规格的标准化是未来的发展趋势,也促进了自动化模块生产线的发展. 锂电池模块生产线通过涂胶-电池堆叠-组装- ...
- linux 常用操作搜集
1.去除空行 方法一:利用grep grep -v '^\s*$' test.txt 注:-v表示将匹配的结果进行反转,正则表达式匹配空行.(空行可包括空格符制表符等空白字符) 方法二:利用sed s ...
- MySQL主从复制之GTID模式介绍
GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. GTID概述 MySQL5.6 在原有主从复制的基础上增加了一个新的复制方式,即基于GTID的复制方式,它由UUID和事务 ...
- BTDetect用户协议和技术支持
1.巴蜀生物科技检测用户协议 2.基于机器学习的生物检测项目 3.BTDetect用户手册和技术支持
- django中视图函数的FBV和CBV
1.什么是FBV和CBV FBV是指视图函数以普通函数的形式:CBV是指视图函数以类的方式. 2.普通FBV形式 def index(request): return HttpResponse('in ...
- JZOJ3542冒泡排序
题面 下面是一段实现冒泡排序算法的C++代码: for (int i=1;i<=n-1;i++) for (int j=1;j<=n-i ;j++) if(a[j]>a[j+1] ...
- HTML+JS+CSS 实现随机跳转到一个网址
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta http ...