BZOJ 3331 (Tarjan缩点+树上差分)
题面
分析
用Tarjan求出割点,对点-双连通分量(v-DCC)进行缩点,图会变成一棵树
注意v-DCC的缩点和e-DCC不同,因为一个割点可能属于多个v-DCC
设图中共有p个割点和t个v-DCC,我们建立一张包含p+t个点的新图,并将每个割点和包含它的所有v-DCC连边
缩点后原图中一般点的编号为v-DCC的编号,第i个割点的编号为(v-DCC个数+i)
对于原图上的一条路径(u,v),找到u,v对应的新编号,用树上差分算法更新路径上的所有点,使次数+1
为了处理若u,v不是割点,无法更新u,v的访问次数(因为在新图上v-DCC上的所有点被缩成了一个大点,而我们却要对点u,v单独进行更新
因此,我们在原图上建立一个数组graph_count,记录第i号节点(不是割点)的访问次数
输出答案时:
-若i是割点,直接输出树上对应的割点的访问次数
-否则输出graph_count[i]
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<stack>
#include<set>
#define maxn 200005
#define maxm 200005
#define maxlog 32
using namespace std;
int n,m,q;
inline int qread(){
int x=0,sign=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=x*10+c-'0';
c=getchar();
}
return x*sign;
}
struct graph {
struct edge {
int from;
int to;
int next;
} E[maxm<<1];
int head[maxn];
int ecnt;
void add_edge(int u,int v) {
ecnt++;
E[ecnt].from=u;
E[ecnt].to=v;
E[ecnt].next=head[u];
head[u]=ecnt;
}
graph(){
memset(head,0,sizeof(head));
memset(E,0,sizeof(E));
ecnt=1;
}
};
graph G,T;
int tim,cnt,newn;
int dfn[maxn];
int low[maxn];
int cut[maxn];
int new_id[maxn];
int belong[maxn];
stack<int>s;
vector<int>v_dcc[maxn];
void tarjan(int x){
int flag=0;
dfn[x]=low[x]=++tim;
s.push(x);
for(int i=G.head[x];i;i=G.E[i].next){
int y=G.E[i].to;
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
if(dfn[x]<=low[y]){
flag++;
if(x!=1||flag>1) cut[x]=1;
cnt++;
int z;
do{
z=s.top();
s.pop();
v_dcc[cnt].push_back(z);
}while(z!=y);
v_dcc[cnt].push_back(x);
}
}else low[x]=min(low[x],dfn[y]);
}
}
void graph_to_tree(){
tim=cnt=0;
tarjan(1);
newn=cnt;
for(int i=1;i<=n;i++){
if(cut[i]){
belong[i]=++newn;
}
}
for(int i=1;i<=cnt;i++){
for(int j=0;j<v_dcc[i].size();j++){
int x=v_dcc[i][j];
if(cut[x]){
T.add_edge(i,belong[x]);
T.add_edge(belong[x],i);
}
else belong[x]=i;
}
}
}
int graph_count[maxn];
int tree_count[maxn];
int deep[maxn];
int anc[maxn][maxlog];
void lca_init(int x,int fa){
deep[x]=deep[fa]+1;
anc[x][0]=fa;
for(int i=1;i<=20;i++){
anc[x][i]=anc[anc[x][i-1]][i-1];
}
for(int i=T.head[x];i;i=T.E[i].next){
int y=T.E[i].to;
if(y!=fa){
lca_init(y,x);
}
}
}
int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=20;i>=0;i--){
if(deep[anc[x][i]]>=deep[y]){
x=anc[x][i];
}
}
if(x==y) return x;
for(int i=20;i>=0;i--){
if(anc[x][i]!=anc[y][i]){
x=anc[x][i];
y=anc[y][i];
}
}
return anc[x][0];
}
void add_route(int u,int v){
int l=lca(u,v);
tree_count[l]--;
tree_count[anc[l][0]]--;
tree_count[u]++;
tree_count[v]++;
}
void sum_up(int x,int fa){
for(int i=T.head[x];i;i=T.E[i].next){
int y=T.E[i].to;
if(y!=fa){
sum_up(y,x);
tree_count[x]+=tree_count[y];
}
}
}
int main() {
int u,v,nu,nv;
n=qread();
m=qread();
q=qread();
for(int i=1;i<=m;i++){
u=qread();
v=qread();
G.add_edge(u,v);
G.add_edge(v,u);
}
graph_to_tree();
lca_init(1,0);
for(int i=1;i<=q;i++){
u=qread();
v=qread();
nu=belong[u];
nv=belong[v];
add_route(nu,nv);
if(!cut[u]) graph_count[u]++;
if(!cut[v]) graph_count[v]++;
}
sum_up(1,0);
for(int i=1;i<=n;i++){
if(cut[i]){
graph_count[i]=tree_count[belong[i]];
}
}
for(int i=1;i<=n;i++){
printf("%d\n",graph_count[i]);
}
}
BZOJ 3331 (Tarjan缩点+树上差分)的更多相关文章
- BZOJ 3307 雨天的尾巴 (树上差分+线段树合并)
题目大意:给你一棵树,树上一共n个节点,共m次操作,每次操作给一条链上的所有节点分配一个权值,求所有节点被分配到所有的权值里,出现次数最多的权值是多少,如果出现次数相同就输出最小的. (我辣鸡bzoj ...
- [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp
<题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...
- BZOJ 1179 (Tarjan缩点+DP)
题面 传送门 分析 由于一个点可以经过多次,显然每个环都会被走一遍. 考虑缩点,将每个强连通分量缩成一个点,点权为联通分量上的所有点之和 缩点后的图是一个有向无环图(DAG) 可拓扑排序,按照拓扑序进 ...
- bzoj 2783: [JLOI2012]树【树上差分】
注意是等于s不是大于s dfs,用set或者map存这条链到root的点权和sum[u],更新答案的时候查一下有没有s-sum[u]即可 #include<iostream> #inclu ...
- BZOJ 3331 [BeiJing2013]压力-Tarjan + 树上差分
Solution Tarjan 点双缩点, 加上树上差分计算. 注意特判... 我特判挂了好久呜呜呜 Code #include<cstdio> #include<cstring&g ...
- BZOJ 压力 tarjan 点双联通分量+树上差分+圆方树
题意 如今,路由器和交换机构建起了互联网的骨架.处在互联网的骨干位置的核心路由器典型的要处理100Gbit/s的网络流量. 他们每天都生活在巨大的压力之下.小强建立了一个模型.这世界上有N个网络设备, ...
- [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分)
[Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得 ...
- BZOJ 1051 受欢迎的牛(Tarjan缩点)
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4573 Solved: 2428 [Submit][S ...
- BZOJ 4326 NOIP2015 运输计划(树上差分+LCA+二分答案)
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MB Submit: 1388 Solved: 860 [Submit][Stat ...
随机推荐
- Vue 实现一个分页组件
实现分页组件要分三个部分 样式,逻辑,和引用 首先新建一个vue文件用来承载组件内容 第一步:构建样式 <template> <nav> <ul class=" ...
- windows 10 自动升级后环境变量无效
上个礼拜放假的时候,win10提示需要升级,我当时随手就一点更新并关机...今天,在启动项目时候尴尬了: D:\project\js\iam-web\code\iam-web>npm run d ...
- python OpenCV视频的读取及保存
import cv2 cap = cv2.VideoCapture('rtsp://admin:hik12345@192.168.3.160/Streaming/Channels/1') fourcc ...
- Linux-安装python3环境
Linux-安装python3环境 [root@node1 ~]# yum -y groupinstall "Development tools" [root@node1 ~]# ...
- JuniorCTF - Web - blind
题目链接 https://ctftime.org/task/7450 参考链接 https://github.com/Dvd848/CTFs/blob/master/2018_35C3_Junior/ ...
- 【LeetCode】哈希表 hash_table(共88题)
[1]Two Sum (2018年11月9日,k-sum专题,算法群衍生题) 给了一个数组 nums, 和一个 target 数字,要求返回一个下标的 pair, 使得这两个元素相加等于 target ...
- gbase整合mybatis出现: Cause: java.sql.SQLException: Can't convert to: binary stream
参考地址:http://mybatis-user.963551.n3.nabble.com/Map-SQL-Type-LVARCHAR-x-to-JDBC-Type-VARCHAR-globally- ...
- 了解卷积神经网络如何使用TDA学习
在我之前的文章中,我讨论了如何对卷积神经网络(CNN)学习的权重进行拓扑数据分析,以便深入了解正在学习的内容以及如何学习它. 这项工作的重要性可归纳如下: 它使我们能够了解神经网络如何执行分类任务. ...
- R语言里面的循环变量
for (i in 1:10) { print("Hello world") } 以上这条命令执行完之后,变量i会被保存下来!并且,i的值将是10. 程序中有多处循环的时候要非常注 ...
- tar解压命令
解压 tar –xvf file.tar //解压 tar包 tar -xzvf file.tar.gz //解压tar.gz tar -xjvf file.tar.bz2 //解压 tar.bz2 ...