Spark中的术语图解总结
参考:http://www.raincent.com/content-85-11052-1.html
1、Application:Spark应用程序
指的是用户编写的Spark应用程序,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码。
Spark应用程序,由一个或多个作业JOB组成,如下图所示:

2、Driver:驱动程序
Driver负责运行Application的Main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境。在Spark中由SparkContext负责和ClusterManager通信,进行资源的申请、任务的分配和监控等;当Executor部分运行完毕后,Driver负责将SparkContext关闭。通常SparkContext代表Driver,如下图所示:

3、Cluster Manager:资源管理器
指的是在集群上获取资源的外部服务,常用的有:
- Standalone,Spark原生的资源管理器,由Master负责资源的分配;
- Haddop Yarn模式由Yarn中的ResearchManager负责资源的分配;
- Messos,由Messos中的Messos Master负责资源管理。

4、Executor:执行器
Application运行在Worker节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor,如下图所示:

5、Worker:计算节点
集群中任何可以运行Application代码的节点,类似于Yarn中的NodeManager节点。
- 在Standalone模式中指的就是通过Slave文件配置的Worker节点
- 在Spark on Yarn模式中指的就是NodeManager节点
- 在Spark on Messos模式中指的就是Messos Slave节点

6、RDD:弹性分布式数据集
Resillient Distributed Dataset,Spark的基本计算单元,可以通过一系列算子进行操作(主要有Transformation和Action操作),如下图所示:

7、Lineage(血统):
记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

8、依赖:
RDDs通过操作算子进行转换,转换得到的新RDD包含了从其他RDDs衍生所必需的信息,RDDs之间维护着这种血缘关系,也称之为依赖。
1)窄依赖(比喻:独生子女):
RDDs之间分区是一一对应的,父RDD每一个分区最多被一个子RDD的分区所用;表现为一个父RDD的分区对应于一个子RDD的分区,或两个父RDD的分区对应于一个子RDD 的分区。如图所示:

常见的窄依赖有:map、filter、union、mapPartitions、mapValues、join(父RDD是hash-partitioned :如果JoinAPI之前被调用的RDD API是宽依赖(存在shuffle), 而且两个join的RDD的分区数量一致,join结果的rdd分区数量也一样,这个时候join api是窄依赖)。
2)宽依赖(比喻:超生)
下游RDD的每个分区与上游RDD(也称之为父RDD)的每个分区都有关,是多对多的关系。父RDD的每个分区都可能被多个子RDD分区所使用,子RDD分区通常对应所有的父RDD分区。如图所示:

常见的宽依赖有groupByKey、partitionBy、reduceByKey、join(父RDD不是hash-partitioned :除此之外的,rdd 的join api是宽依赖)。
9、DAG:有向无环图
Directed Acycle graph,反应RDD之间的依赖关系,如图所示:

10、DAGScheduler:有向无环图调度器
基于DAG划分Stage并以TaskSet的形势提交Stage给TaskScheduler;
负责将作业拆分成不同阶段的具有依赖关系的多批任务;
最重要的任务之一就是:计算作业和任务的依赖关系,制定调度逻辑。
在SparkContext初始化的过程中被实例化,一个SparkContext对应创建一个DAGScheduler。

11、TaskScheduler:任务调度器
将Taskset提交给worker(集群)运行并回报结果;负责每个具体任务的实际物理调度。如图所示:

12、Job:作业
由一个或多个调度阶段所组成的一次计算作业;包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation。如图所示:

13、Stage:调度阶段
一个任务集对应的调度阶段;每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段;Stage分成两种类型ShuffleMapStage、ResultStage。如图所示:

14、TaskSet:任务集
由一组关联的,但相互之间没有Shuffle依赖关系的任务所组成的任务集。如图所示:

提示:
1)一个Stage创建一个TaskSet;
2)为Stage的每个Rdd分区创建一个Task,多个Task封装成TaskSet
15、Task:任务
被送到某个Executor上的工作任务;单个分区数据集上的最小处理流程单元。如图所示:

总体如图所示:

常见的窄依赖有:map、filter、union、mapPartitions、mapValues、join(父RDD是hash-partitioned :如果JoinAPI之前被调用的RDD API是宽依赖(存在shuffle), 而且两个join的RDD的分区数量一致,join结果的rdd分区数量也一样,这个时候join api是窄依赖)。
Spark中的术语图解总结的更多相关文章
- Spark中的编程模型
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Applicat ...
- Spark集群术语
Spark集群术语解析 1. Application Application是用户在Spark上构建(编写)的程序,包含driver program 和executors(分布在集群中多个节点上运行的 ...
- 【Spark篇】--Spark中Standalone的两种提交模式
一.前述 Spark中Standalone有两种提交模式,一个是Standalone-client模式,一个是Standalone-master模式. 二.具体 1.Standalon ...
- Spark中常用工具类Utils的简明介绍
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...
- SPARK 中 DriverMemory和ExecutorMemory
spark中,不论spark-shell还是spark-submit,都可以设置memory大小,但是有的同学会发现有两个memory可以设置.分别是driver memory 和executor m ...
- Scala 深入浅出实战经典 第65讲:Scala中隐式转换内幕揭秘、最佳实践及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第61讲:Scala中隐式参数与隐式转换的联合使用实战详解及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
- Scala 深入浅出实战经典 第60讲:Scala中隐式参数实战详解以及在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第51讲:Scala中链式调用风格的实现代码实战及其在Spark中应用
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
随机推荐
- setAttribute()方法和 getAttribute() 方法
一.setAttribute() 方法 setAttribute() 方法为一个或一组元素添加指定的属性,并且为其赋指定的值.(主要针对自定义属性) 如果这个属性已经存在,仅仅设置或是修改属性值. 浏 ...
- 基于MaxCompute InformationSchema进行血缘关系分析
一.需求场景分析 在实际的数据平台运营管理过程中,数据表的规模往往随着更多业务数据的接入以及数据应用的建设而逐渐增长到非常大的规模,数据管理人员往往希望能够利用元数据的分析来更好地掌握不同数据表的血缘 ...
- java文件断点续传上传下载解决方案
这里只写后端的代码,基本的思想就是,前端将文件分片,然后每次访问上传接口的时候,向后端传入参数:当前为第几块文件,和分片总数 下面直接贴代码吧,一些难懂的我大部分都加上注释了: 上传文件实体类: 看得 ...
- 关于MYSQL日期 字符串 时间戳互转
时间转字符串: select date_format(now(), '%Y-%m-%d'); #结果:2016-01-05 时间转时间戳: select unix_timestamp(now()); ...
- java 手机号/身份证(*)加密隐藏中间某几位几位
//手机号 保留前3 后4 String phone = "18771632488"; System.out.println(phone.replaceAll("(\\d ...
- kotlin 简单处理 回调参数 加?
Kotlin Parameter specified as non-null is null 2017年10月18日 17:21:49 amiko_ 阅读数:9017 版权声明:本文为博主原创文 ...
- 选题 Scrum立会报告+燃尽图 06
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/8678 一.小组情况组长:贺敬文组员:彭思雨 王志文 位军营 杨萍队名:胜 ...
- MSO Transponder 页面开发思路
1. 确定Transponder开发页面分类,定义负责模块 2. 定义模块页面布局 3. 选择页面各数据对应的控件类型 4. 选定控件对应set/get所用方式 快捷键链接设置: http://www ...
- MongoDB数据库的基本操作命令
启动服务 net start mongodb 使用 登录本机mongodb Mongodb服务启动之后,打开命令行工具. 登录 mongo 127.0.0.1:27017 27017是mongodb的 ...
- DAY 5模拟赛
DAY 5 廖俊豪神仙出题 T1 最小差异矩阵(a.cpp, a.in, a.out) [题目描述] 有一个 n*m 的矩阵,矩阵的每个位置上可以放置一个数.对于第 i 行,第 i 行的差异定义为该行 ...