Spark 分组取Top N运算

大数据处理中,对数据分组后,取TopN是非常常见的运算。

下面我们以一个例子来展示spark如何进行分组取Top的运算。

1、RDD方法分组取TopN

from pyspark import SparkContext
sc = SparkContext()

准备数据,把数据转换为rdd格式

data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
] data = sc.parallelize(data_list)
data.collect()
[(0, 'cat26', 130.9),
(0, 'cat13', 122.1),
(0, 'cat95', 119.6),
(0, 'cat105', 11.3),
(1, 'cat67', 128.5),
(1, 'cat4', 126.8),
(1, 'cat13', 112.6),
(1, 'cat23', 15.3),
(2, 'cat56', 139.6),
(2, 'cat40', 129.7),
(2, 'cat187', 127.9),
(2, 'cat68', 19.8),
(3, 'cat8', 135.6)]

对数据使用groupBy操作来分组。可以看到分组后数据为(key, list_data)

d1 = data.groupBy(lambda x:x[0])
temp = d1.collect()
print(list(temp[0][1]))
print(temp)
[(0, 'cat26', 130.9), (0, 'cat13', 122.1), (0, 'cat95', 119.6), (0, 'cat105', 11.3)]
[(0, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C710>), (1, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C780>), (2, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C898>), (3, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C9B0>)]

使用mapValues方法对数据进行排序。

可以根据需要来取Top N 数据。

这里取Top 3 的数据

d2 = d1.mapValues(lambda x: sorted(x, key=lambda y:y[2])[:3])
d2.collect()
[(0, [(0, 'cat105', 11.3), (0, 'cat95', 119.6), (0, 'cat13', 122.1)]),
(1, [(1, 'cat23', 15.3), (1, 'cat13', 112.6), (1, 'cat4', 126.8)]),
(2, [(2, 'cat68', 19.8), (2, 'cat187', 127.9), (2, 'cat40', 129.7)]),
(3, [(3, 'cat8', 135.6)])]

使用flatmap方法把结果拉平,变成一个list返回。

d3 = d2.flatMap(lambda x:[i for i in x[1]])
d3.collect()
[(0, 'cat105', 11.3),
(0, 'cat95', 119.6),
(0, 'cat13', 122.1),
(1, 'cat23', 15.3),
(1, 'cat13', 112.6),
(1, 'cat4', 126.8),
(2, 'cat68', 19.8),
(2, 'cat187', 127.9),
(2, 'cat40', 129.7),
(3, 'cat8', 135.6)]

整体代码

from pyspark import SparkContext
# sc = SparkContext() topN = 3
data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
] data = sc.parallelize(data_list)
d1 = data.groupBy(lambda x:x[0])
d2 = d1.mapValues(lambda x: sorted(x, key=lambda y:y[2])[:topN])
d3 = d2.flatMap(lambda x:[i for i in x[1]])
d3.collect()
[(0, 'cat105', 11.3),
(0, 'cat95', 119.6),
(0, 'cat13', 122.1),
(1, 'cat23', 15.3),
(1, 'cat13', 112.6),
(1, 'cat4', 126.8),
(2, 'cat68', 19.8),
(2, 'cat187', 127.9),
(2, 'cat40', 129.7),
(3, 'cat8', 135.6)]

2、Dataframe方法分组取TopN

dataframe数据格式分组取top N,简单的方法是使用Window方法

from pyspark.sql import SparkSession
from pyspark.sql import functions as func
from pyspark.sql import Window spark = SparkSession.builder.getOrCreate() data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
]
根据数据创建dataframe,并给数据列命名
df = spark.createDataFrame(data_list, ["Hour", "Category", "TotalValue"])
df.show()
+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
| 0| cat26| 130.9|
| 0| cat13| 122.1|
| 0| cat95| 119.6|
| 0| cat105| 11.3|
| 1| cat67| 128.5|
| 1| cat4| 126.8|
| 1| cat13| 112.6|
| 1| cat23| 15.3|
| 2| cat56| 139.6|
| 2| cat40| 129.7|
| 2| cat187| 127.9|
| 2| cat68| 19.8|
| 3| cat8| 135.6|
+----+--------+----------+
  1. 使用窗口方法,分片参数为分组的key,

  2. orderBy的参数为排序的key,这里使用desc降序排列。

  3. withColumn(colName, col),为df添加一列,数据为对window函数生成的数据编号

  4. where方法取rn列值小于3的数据,即取top3数据

w = Window.partitionBy(df.Hour).orderBy(df.TotalValue.desc())
top3 = df.withColumn('rn', func.row_number().over(w)).where('rn <=3')
top3.show()
+----+--------+----------+---+
|Hour|Category|TotalValue| rn|
+----+--------+----------+---+
| 0| cat26| 130.9| 1|
| 0| cat13| 122.1| 2|
| 0| cat95| 119.6| 3|
| 1| cat67| 128.5| 1|
| 1| cat4| 126.8| 2|
| 1| cat13| 112.6| 3|
| 3| cat8| 135.6| 1|
| 2| cat56| 139.6| 1|
| 2| cat40| 129.7| 2|
| 2| cat187| 127.9| 3|
+----+--------+----------+---+
### 代码汇总

from pyspark.sql import SparkSession
from pyspark.sql import functions as func
from pyspark.sql import Window spark = SparkSession.builder.getOrCreate() data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
]
df = spark.createDataFrame(data_list, ["Hour", "Category", "TotalValue"]) w = Window.partitionBy(df.Hour).orderBy(df.TotalValue.desc())
top3 = df.withColumn('rn', func.row_number().over(w)).where('rn <=3') top3.show()

Spark 两种方法计算分组取Top N的更多相关文章

  1. 面试题:两种方法计算n!

    直接上代码package com.face.test; public class Test { /** * 面试题:递归方法计算n! */ @org.junit.Test public void di ...

  2. JAVA 集合 List 分组的两种方法

    CSDN日报20170219--<程序员的沟通之痛> [技术直播]揭开人工智能神秘的面纱 程序员1月书讯 云端应用征文大赛,秀绝招,赢无人机! JAVA 集合 List 分组的两种方法 2 ...

  3. 计算理论:NFA转DFA的两种方法

    本文将以两种方法实现NFA转DFA,并利用C语言实现. 方法二已利用HNU OJ系统验证,方法一迷之WA,但思路应该是对的,自试方案,测试均通过. (主要是思路,AC均浮云,大概又有什么奇怪的Case ...

  4. Spark Streaming中空batches处理的两种方法(转)

    原文链接:Spark Streaming中空batches处理的两种方法 Spark Streaming是近实时(near real time)的小批处理系统.对给定的时间间隔(interval),S ...

  5. 【转】oracle 中随机取一条记录的两种方法

    oracle 中随机取一条记录的两种方法 V_COUNT INT:=0; V_NUM INT :=0; 1:TBL_MYTABLE 表中要有一个值连续且唯一的列FID BEGIN SELECT COU ...

  6. 选中没有选中的复选框,匹配含有某个字符串的正则,json取值的两种方法,把变量定义在外面跟里面的区别

    一.筛选没有选中的复选框:not("input:checked") 二.匹配有VARCHAR的字符串:".*VARCHAR.*?" 三.json取值的两种方法 ...

  7. 用Python计算幂的两种方法,非递归和递归法

    用Python计算幂的两种方法: #coding:utf-8 #计算幂的两种方法.py #1.常规方法利用函数 #不使用递归计算幂的方法 """ def power(x, ...

  8. 取xml文件转成List<T>对象的两种方法

    读取xml文件转成List<T>对象的两种方法(附源码)   读取xml文件转成List<T>对象的两种方法(附源码) 读取xml文件,是项目中经常要用到的,所以就总结一下,最 ...

  9. 2014 Super Training #4 G What day is that day? --两种方法

    原题: ZOJ 3785 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3785 题意:当天是星期六,问经过1^1+2^2+ ...

随机推荐

  1. java代码(11) ---java代码的优化

    java代码的优化 参考了一些Java开发手册有关代码的规范,觉得一段好的代码可以从三个维度去分析.1)性能,2)可扩展性,3)可读性 让我们看看别人是怎么去分析,还有值得我们去学习的地方,也是我正在 ...

  2. 自己动手写SQL执行引擎

    自己动手写SQL执行引擎 前言 在阅读了大量关于数据库的资料后,笔者情不自禁产生了一个造数据库轮子的想法.来验证一下自己对于数据库底层原理的掌握是否牢靠.在笔者的github中给这个database起 ...

  3. 从程序员到项目主管再到项目总监,一个IT从业者三个职业生涯阶段的工作生活日常

    这是王不留的第 8 篇原创文章 前段时间写过<王不留的十多年工作和生活的流水帐>,在知乎.简书,还有不少微信的朋友私信问我每天四点钟是如何做到的?你现在的作息时间是怎么安排的? 于是,我将 ...

  4. iOS -UIColor随机生成颜色的方法

    在iOS 中的UIColor拥有这么多关于颜色的类方法,对于一般常见的UI控件,我们可以通过[UIColorblackColor]设置背景色 eg:设置button 的背景色为红色 UIButton ...

  5. ES6优雅的异步操作Promise()

    一.Promise()的基本使用 <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  6. Python--文件操作(操作文件)

    文件的操作包含:读.写.修改 文件的多种操作: # 读取文件的所有内容 data = open("yesteday.txt", encoding="utf-8" ...

  7. Java 多线程基础(四)线程安全

    Java 多线程基础(四)线程安全 在多线程环境下,如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线 ...

  8. jQuery实现购物车商品数量及总价的计算

    记录一下项目中遇到的计算购物车商品数量和总价的jQuery代码,重点在于选择器以及.text()命令的使用. 先上效果图,点击加减,商品数量以及总价会发生相应变化. html代码: <div c ...

  9. Python爬虫小白入门(一)入门介绍

    一.前言 你是不是在为想收集数据而不知道如何收集而着急? 你是不是在为想学习爬虫而找不到一个专门为小白写的教程而烦恼? Bingo! 你没有看错,这就是专门面向小白学习爬虫而写的!我会采用实例的方式, ...

  10. 大数据之Hudi + Kylin的准实时数仓实现

    问题导读:1.数据库.数据仓库如何理解?2.数据湖有什么用途?解决什么问题?3.数据仓库的加载链路如何实现?4.Hudi新一代数据湖项目有什么优势? 在近期的 Apache Kylin × Apach ...