import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os # do not print irrelevant information
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# x: [60k,28,28], [10,28,28]
# y: [60k], [10k]
(x, y), (x_test, y_test) = datasets.mnist.load_data()
# transform Tensor
# x: [0~255] ==》 [0~1.]
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32) x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255.
y_test = tf.convert_to_tensor(y_test, dtype=tf.int32)
# batch of 128
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
# [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
# [dim_in,dim_out],[dim_out]
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
# learning rate
lr = 1e-3
for epoch in range(10):  # iterate db for 10
# tranin every train_db
for step, (x, y) in enumerate(train_db):
# x: [128,28,28]
# y: [128] # [b,28,28] ==> [b,28*28]
x = tf.reshape(x, [-1, 28 * 28]) with tf.GradientTape(
) as tape: # only data types of tf.variable are logged
# x: [b,28*28]
# h1 = x@w1 + b1
# [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256]
h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
h1 = tf.nn.relu(h1)
# [b,256] ==> [b,128]
# h2 = x@w2 + b2 # b2 can broadcast automatic
h2 = h1 @ w2 + b2
h2 = tf.nn.relu(h2)
# [b,128] ==> [b,10]
out = h2 @ w3 + b3 # compute loss
# out: [b,10]
# y:[b] ==> [b,10]
y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2)
# [b,10]
loss = tf.square(y_onehot - out)
# mean:scalar
loss = tf.reduce_mean(loss) # compute gradients
grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
# w1 = w1 - lr * w1_grad
# w1 = w1 - lr * grads[0] # not in situ update
# in situ update
w1.assign_sub(lr * grads[0])
b1.assign_sub(lr * grads[1])
w2.assign_sub(lr * grads[2])
b2.assign_sub(lr * grads[3])
w3.assign_sub(lr * grads[4])
b3.assign_sub(lr * grads[5]) if step % 100 == 0:
print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}') # [w1,b1,w2,b2,w3,b3]
total_correct, total_num = 0, 0
for step, (x, y) in enumerate(test_db):
# [b,28,28] ==> [b,28*28]
x = tf.reshape(x, [-1, 28 * 28]) # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
h1 = tf.nn.relu(x @ w1 + b1)
h2 = tf.nn.relu(h1 @ w2 + b2)
out = h2 @ w3 + b3 # out: [b,10] ~ R
# prob: [b,10] ~ (0,1)
prob = tf.nn.softmax(out, axis=1)
# [b,10] ==> [b]
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# y: [b]
# [b], int32
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct) total_correct += int(correct)
total_num += x.shape[0]
acc = total_correct / total_num
print(f'test acc: {acc}')

吴裕雄--天生自然TensorFlow2教程:测试(张量)- 实战的更多相关文章

  1. 吴裕雄--天生自然TensorFlow2教程:张量限幅

    import tensorflow as tf a = tf.range(10) a # a中小于2的元素值为2 tf.maximum(a, 2) # a中大于8的元素值为8 tf.minimum(a ...

  2. 吴裕雄--天生自然TensorFlow2教程:张量排序

    import tensorflow as tf a = tf.random.shuffle(tf.range(5)) a tf.sort(a, direction='DESCENDING') # 返回 ...

  3. 吴裕雄--天生自然TensorFlow2教程:前向传播(张量)- 实战

    手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3-255表示图片的灰度值,0表示纯白,255表示纯黑 ...

  4. 吴裕雄--天生自然TensorFlow2教程:手写数字问题实战

    import tensorflow as tf from tensorflow import keras from keras import Sequential,datasets, layers, ...

  5. 吴裕雄--天生自然TensorFlow2教程:函数优化实战

    import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...

  6. 吴裕雄--天生自然TensorFlow2教程:反向传播算法

  7. 吴裕雄--天生自然TensorFlow2教程:链式法则

    import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...

  8. 吴裕雄--天生自然TensorFlow2教程:多输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  9. 吴裕雄--天生自然TensorFlow2教程:单输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = tf.con ...

随机推荐

  1. Django(十九)文件上传:图片上传(后台上传、自定义上传)、

    一.基本设置 参考:https://docs.djangoproject.com/zh-hans/3.0/topics/http/file-uploads/ 1)配置project1/settings ...

  2. idea跑mapreduce结果为空白文本,idea代码被莫名其妙地改动了

    遇到如题的错误, 一开始查找Step1Main.java的代码错误,尝试关掉分区设置,还是一样. 后来以为是mapper或reducer不执行,网上查找了半天也没有正确原因. 最终,偶然间看到redu ...

  3. 牛客周赛11TG B-弹钢琴

    链接:https://ac.nowcoder.com/acm/contest/941/B来源:牛客网 题目描述 春希想听和纱弹钢琴! 为了阻止异变的发生,Pi将钢琴魔改了 钢琴上有 N 个键,每个键有 ...

  4. python 关于异常处理 try...except... 的两个案例

    输入若干个成绩,求所有成绩的平均分.每输入一个成绩后询问是否继续输入下一个成绩,回答“yes”就继续输入下一个成绩,回答“no”就停止输入成绩. numbers = [] #使用列表存放临时数据 wh ...

  5. 从三星官方uboot开始移植

    移植前的准备 下载 android_uboot_smdkv210.tar.bz2 这个文件 开始移植 本人使用的开发板是九鼎的 x210,在三星 uboot 的主 Makefile 中找到了类似的 s ...

  6. 向量容器vector操作

    1.向量容器vector 1.1 vector说明 进行vector操作前应添加头文件#include<vector>: vector是向量类型,可以容纳许多类型的数据,因此也被称为容器: ...

  7. 040、Java中逻辑运算之短路与运算“&&”

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  8. 003.Oracle数据库 , 查询日期格式格式化

    /*日期格式转换*/ SELECT TO_CHAR( OCCUR_DATE, 'yyyy/mm/dd hh24:mi:ss' ) FROM LM_FAULT WHERE ( ( OCCUR_DATE ...

  9. 官网英文版学习——RabbitMQ学习笔记(二)RabbitMQ安装

    一.安装RabbitMQ的依赖Erlang 要进行RabbitMQ学习,首先需要进行RabbitMQ服务的安装,安装我们可以根据官网指导进行http://www.rabbitmq.com/downlo ...

  10. tomcat端口号被占用,且杀进程不能够杀掉解决办法

    在电脑上安装了zookeeper以后,配置好tomcat启动发现端口号8009端口号被占用,报错如下: 采用netstat –ano 查询所有进程查看或者根据端口号查进程netstat -ano |f ...