吴裕雄--天生自然TensorFlow2教程:测试(张量)- 实战
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os # do not print irrelevant information
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# x: [60k,28,28], [10,28,28]
# y: [60k], [10k]
(x, y), (x_test, y_test) = datasets.mnist.load_data()
# transform Tensor
# x: [0~255] ==》 [0~1.]
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32) x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255.
y_test = tf.convert_to_tensor(y_test, dtype=tf.int32)
# batch of 128
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
# [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
# [dim_in,dim_out],[dim_out]
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
# learning rate
lr = 1e-3
for epoch in range(10): # iterate db for 10
# tranin every train_db
for step, (x, y) in enumerate(train_db):
# x: [128,28,28]
# y: [128] # [b,28,28] ==> [b,28*28]
x = tf.reshape(x, [-1, 28 * 28]) with tf.GradientTape(
) as tape: # only data types of tf.variable are logged
# x: [b,28*28]
# h1 = x@w1 + b1
# [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256]
h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
h1 = tf.nn.relu(h1)
# [b,256] ==> [b,128]
# h2 = x@w2 + b2 # b2 can broadcast automatic
h2 = h1 @ w2 + b2
h2 = tf.nn.relu(h2)
# [b,128] ==> [b,10]
out = h2 @ w3 + b3 # compute loss
# out: [b,10]
# y:[b] ==> [b,10]
y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2)
# [b,10]
loss = tf.square(y_onehot - out)
# mean:scalar
loss = tf.reduce_mean(loss) # compute gradients
grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
# w1 = w1 - lr * w1_grad
# w1 = w1 - lr * grads[0] # not in situ update
# in situ update
w1.assign_sub(lr * grads[0])
b1.assign_sub(lr * grads[1])
w2.assign_sub(lr * grads[2])
b2.assign_sub(lr * grads[3])
w3.assign_sub(lr * grads[4])
b3.assign_sub(lr * grads[5]) if step % 100 == 0:
print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}') # [w1,b1,w2,b2,w3,b3]
total_correct, total_num = 0, 0
for step, (x, y) in enumerate(test_db):
# [b,28,28] ==> [b,28*28]
x = tf.reshape(x, [-1, 28 * 28]) # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
h1 = tf.nn.relu(x @ w1 + b1)
h2 = tf.nn.relu(h1 @ w2 + b2)
out = h2 @ w3 + b3 # out: [b,10] ~ R
# prob: [b,10] ~ (0,1)
prob = tf.nn.softmax(out, axis=1)
# [b,10] ==> [b]
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# y: [b]
# [b], int32
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct) total_correct += int(correct)
total_num += x.shape[0]
acc = total_correct / total_num
print(f'test acc: {acc}')
吴裕雄--天生自然TensorFlow2教程:测试(张量)- 实战的更多相关文章
- 吴裕雄--天生自然TensorFlow2教程:张量限幅
import tensorflow as tf a = tf.range(10) a # a中小于2的元素值为2 tf.maximum(a, 2) # a中大于8的元素值为8 tf.minimum(a ...
- 吴裕雄--天生自然TensorFlow2教程:张量排序
import tensorflow as tf a = tf.random.shuffle(tf.range(5)) a tf.sort(a, direction='DESCENDING') # 返回 ...
- 吴裕雄--天生自然TensorFlow2教程:前向传播(张量)- 实战
手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3-255表示图片的灰度值,0表示纯白,255表示纯黑 ...
- 吴裕雄--天生自然TensorFlow2教程:手写数字问题实战
import tensorflow as tf from tensorflow import keras from keras import Sequential,datasets, layers, ...
- 吴裕雄--天生自然TensorFlow2教程:函数优化实战
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...
- 吴裕雄--天生自然TensorFlow2教程:反向传播算法
- 吴裕雄--天生自然TensorFlow2教程:链式法则
import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...
- 吴裕雄--天生自然TensorFlow2教程:多输出感知机及其梯度
import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...
- 吴裕雄--天生自然TensorFlow2教程:单输出感知机及其梯度
import tensorflow as tf x = tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = tf.con ...
随机推荐
- django ajax发送post请求
第一种:将csrf_token放在from表单里 <script> function add_competion_goods() { $.ajax({ url: "{% url ...
- java csv文件写入
List<String> list_code = null; 方案1 控制字符集: BufferedWriter bw=new BufferedWriter(new OutputStrea ...
- sql语句中 and 与or 的优先级
- c# GlobalAddAtom GlobalDeleteAtom
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 吴裕雄--天生自然java开发常用类库学习笔记:集合工具类Collections
import java.util.Collections ; import java.util.List ; import java.util.Set ; public class Collectio ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-th-list
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- 使用 mtd-utils 烧写Arm Linux 系统各个部分
有关博客:<Arm-Linux 移植 mtd-utils 1.x>.<mtd-utils 的 使用> 背景: 作为一项技术储备,可用于增强系统可维护性. 要求: 要求主板以mt ...
- http请求的过程及潜在的性能优化点
web前端的看富于部署过程 开发者将开发的代码发布到远程的服务器(webserver/cdn),用户通过访问浏览器输入相应的网址,浏览器向远程服务器发送请求,动态的增量式的加载资源 web前端就是一个 ...
- 155-PHP stripos函数
<?php $str='password'; //定义一个字符串 $position=strpos($str,'S'); //查找字母s第一次出现的位置 echo '字母S的位置是'.$posi ...
- 070-PHP数组相加
<?php $arr1=array('a','b','c'); //定义一个数组 echo '数组$arr1的信息:<br />'; print_r($arr1); //输出数组信息 ...