今天简单记录一下,利用Scala解答的一道LRU题目,原题为LeetCode的第146题,是一道设计LRU的题目。

题目详情

运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。

写入数据 put(key, value) - 如果密钥已经存在,则变更其数据值;如果密钥不存在,则插入该组「密钥/数据值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4

解答思路

这道题里,可以立即想到的是借助HashMap以及双向链表构建,更具体的分析可看LeetCode官方分析,在此不做赘述。

我的代码

对于Scala,由于其可以交叉使用Java的数据结构,因此在HashMap的构建部分,我也尝试了分别利用Scala自带的mutable.HashMap,以及Java当中的HashMap进行了比较,具体代码如下:

Scala的mutable.HashMap

import scala.collection.mutable.HashMap

class Node(var _key: Int, var _value: Int) {
var key = _key
var value = _value
var prev: Node = _
var next: Node = _
} class DoubleLinked() {
var head: Node = new Node(-1, -1)
var tail: Node = new Node(-1, -1)
head.next = tail
tail.prev = head def addNode(node: Node): Unit = {
head.next.prev = node
node.next = head.next
head.next = node
node.prev = head
} def updateTail(node: Node): Unit = {
tail.prev = node
node.next = tail
}
} class LRUCache(_capacity: Int) {
var cache: HashMap[Int, Node] = new HashMap[Int, Node]()
var dLinked = new DoubleLinked()
val capacity: Int = _capacity def get(key: Int): Int = {
if (!cache.contains(key)) {
return -1
}
updateSurroundings(cache(key))
dLinked.addNode(cache(key))
cache(key).value
} def put(key: Int, value: Int) {
if (cache.contains(key)) {
val node = cache(key)
node.value = value
updateSurroundings(node)
dLinked.addNode(node)
} else {
val node = new Node(key, value)
dLinked.addNode(node)
if (dLinked.tail.prev == dLinked.head) {
dLinked.tail.prev=node
node.next=dLinked.tail
}
cache.put(key,node) if(cache.size>capacity){
cache.remove(dLinked.tail.prev.key)
dLinked.updateTail(dLinked.tail.prev.prev)
dLinked.tail
}
}
} def updateSurroundings(node: Node): Unit = {
if (node.next == dLinked.tail) {
dLinked.tail.prev = node.prev
} node.prev.next = node.next
node.next.prev = node.prev
}
}

经提交测试,在LeetCode提交测试结果中,执行用时1628ms,占用内存82.9M

Java的HashMap

import java.util.HashMap

class Node(var _key: Int, var _value: Int) {
var key = _key
var value = _value
var prev: Node = _
var next: Node = _
} class DoubleLinked() {
var head: Node = new Node(-1, -1)
var tail: Node = new Node(-1, -1)
head.next = tail
tail.prev = head def addNode(node: Node): Unit = {
head.next.prev = node
node.next = head.next
head.next = node
node.prev = head
} def updateTail(node: Node): Unit = {
tail.prev = node
node.next = tail
}
} class LRUCache(_capacity: Int) {
var cache: HashMap[Int, Node] = new HashMap[Int, Node]()
var dLinked = new DoubleLinked()
val capacity: Int = _capacity def get(key: Int): Int = {
var node:Node = cache.get(key)
if (node == null) {
return -1
}
updateSurroundings(node)
dLinked.addNode(node)
node.value
} def put(key: Int, value: Int) {
if (cache.get(key)!=null) {
val node = cache.get(key)
node.value = value
updateSurroundings(node)
dLinked.addNode(node)
} else {
val node = new Node(key, value)
dLinked.addNode(node)
if (dLinked.tail.prev == dLinked.head) {
dLinked.tail.prev=node
node.next=dLinked.tail
}
cache.put(key,node) if(cache.size>capacity){
cache.remove(dLinked.tail.prev.key)
dLinked.updateTail(dLinked.tail.prev.prev)
dLinked.tail
}
}
} def updateSurroundings(node: Node): Unit = {
if (node.next == dLinked.tail) {
dLinked.tail.prev = node.prev
} node.prev.next = node.next
node.next.prev = node.prev
}
}

经提交测试,在LeetCode提交测试结果中,执行用时1456ms,占用内存83.9M

从上述的数据来看,两者运行时的占用内存相近,但是在速度上,使用Java的HashMap版本的代码,运行相对更快,所以有个猜想:如果在Scala代码中,直接使用Java原有的数据结构,是不是也同样会提高Scala代码的运行速度?

希望Scala方面的专家可以解答一下。

写一个LRU算法的记录的更多相关文章

  1. 面试题目:手写一个LRU算法实现

    一.常见的内存淘汰算法 FIFO  先进先出 在这种淘汰算法中,先进⼊缓存的会先被淘汰 命中率很低 LRU Least recently used,最近最少使⽤get 根据数据的历史访问记录来进⾏淘汰 ...

  2. 搞定redis面试--Redis的过期策略?手写一个LRU?

    1 面试题 Redis的过期策略都有哪些?内存淘汰机制都有哪些?手写一下LRU代码实现? 2 考点分析 1)我往redis里写的数据怎么没了? 我们生产环境的redis怎么经常会丢掉一些数据?写进去了 ...

  3. 【redis前传】自己手写一个LRU策略 | redis淘汰策略

    title: 自己手写一个LRU策略 date: 2021-06-18 12:00:30 tags: - [redis] - [lru] categories: - [redis] permalink ...

  4. 手写一个LRU工具类

    LRU概述 LRU算法,即最近最少使用算法.其使用场景非常广泛,像我们日常用的手机的后台应用展示,软件的复制粘贴板等. 本文将基于算法思想手写一个具有LRU算法功能的Java工具类. 结构设计 在插入 ...

  5. JS 实现一个 LRU 算法

    LRU 是 Least Recently Used 的缩写,即最近最少使用,是一种常用的页面置换算法,选择内存中最近最久未使用的页面予以淘汰. 可用的 NodeJS 库见node-lru-cache ...

  6. 动手写一个LRU缓存

    前言 LRU 是 Least Recently Used 的简写,字面意思则是最近最少使用. 通常用于缓存的淘汰策略实现,由于缓存的内存非常宝贵,所以需要根据某种规则来剔除数据保证内存不被占满. 在r ...

  7. python学习(5)写一个二分算法的程序

    把之前学习的做一个小结.之前看二分查找法,只能是似而非地看懂大概.现在用这么多天的知识积累已经可以自己写了. 而且在算法书的基础上,把需要找的数字做一个人机互动操作. 另外,初步接触到了 __name ...

  8. 4.redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现?

    作者:中华石杉 面试题 redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现? 面试官心理分析 如果你连这个问题都不知道,上来就懵了,回答不出来,那线上你写代码的时候,想当 ...

  9. GuavaCache学习笔记一:自定义LRU算法的缓存实现

    前言 今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU算法.于是乎便想到LinkedHashMap和LinkedList+HashMap, 这里仅仅是作为简单的复习一下. ...

随机推荐

  1. vue无法自动打开浏览器

    原文链接: 点我 如果不能自动打开浏览器,是因为没有安装插件. 插件安装的方法1.安装插件,在cmd中输入: $ npm i open-browser-webpack-plugin --save这里的 ...

  2. 图论--最短路--SPFA

    SPFA算法(shortest path faster algorithm)算法是西南交通大学段凡丁于1994年发表的,它在Bellman-ford算法的基础上进行了改进,使其在能够处理待负权图的单元 ...

  3. python selenium(键盘事件 Keys 类)

    1.导入Keys类 from selenium.webdriver.common.keys import Keys Keys.BACK_SPACE  删除输入框内结尾的单个字符 Keys.SPACE  ...

  4. 细说 PEP 468: Preserving Keyword Argument Order

    细说 PEP 468: Preserving Keyword Argument Order Python 3.6.0 版本对字典做了优化,新的字典速度更快,占用内存更少,非常神奇.从网上找了资料来看, ...

  5. 【认证与授权】Spring Security自定义页面

    在前面的篇幅中,我们对认证和授权流程大致梳理了一遍.在这个过程中我们一直都是使用系统生成的默认页面,登录成功后也是直接调转到根路径页面.而在实际的开发过程中,我们是需要自定义登录页面的,有时还会添加各 ...

  6. java读源码 之 list源码分析(ArrayList)---JDK1.8

    java基础 之 list源码分析(ArrayList) ArrayList: 继承关系分析: public class ArrayList<E> extends AbstractList ...

  7. 201771010113-李婷华 实验一 软件工程准备-<软件工程的相关了解>

    项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/nwnu2020SE 这个作业要求链接 https://www.cnblogs.com/nwnu- ...

  8. LeetCode--LinkedList--83.Remove Duplicates from Sorted List(Easy)

    题目地址https://leetcode.com/problems/remove-duplicates-from-sorted-list/ 83. Remove Duplicates from Sor ...

  9. LeetCode--Array--Two sum (Easy)

    1.Two sum (Easy)# Given an array of integers, return indices of the two numbers such that they add u ...

  10. 给大家发个Python和Django的福利吧,不要钱的那种~~~

    前言一: 这篇是一个发放福利的文章,但是发放之前,我还是想跟大家聊聊我为什么要发这样的福利. 我第一份工作是做的IT桌面支持,日常工作就是给同事修修电脑.装装软件.开通账号.维护内部系统之类的基础工作 ...