Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
找从左上角0,0到右下角的最短路径。 DP:
我们每个点(x,y)都可以表示为dp[x][y] = max( grid[x][y] + dp[x-1][y],grid[x][y] + dp[x][y-1] )
第一行和第一列需要特殊处理(因为第一行上面没有数,第一列左边没有数)
class Solution {
public int minPathSum(int[][] grid) { int dp[][] = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for(int i=1;i<grid.length;i++){
dp[i][0] = dp[i-1][0]+grid[i][0]; }
for(int i=1;i<grid[0].length;i++){
dp[0][i] = dp[0][i-1]+grid[0][i];
}
for(int i=1;i<grid.length;i++){
for(int j=1;j<grid[0].length;j++){
dp[i][j] = Math.min(dp[i-1][j]+grid[i][j],dp[i][j-1]+grid[i][j]); }
}
return dp[grid.length-1][grid[0].length-1];
}
}
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)的更多相关文章
- LeetCode 64. 最小路径和(Minimum Path Sum) 20
64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...
- leetcode 64. 最小路径和Minimum Path Sum
很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...
- [Swift]LeetCode64. 最小路径和 | Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- 矩形最小路径和 · Minimum Path Sum
[抄题]: 给定一个只含非负整数的m*n网格,找到一条从左上角到右下角的可以使数字和最小的路径. [思维问题]: [一句话思路]: 和数字三角形基本相同 [输入量]:空: 正常情况:特大:特小:程序里 ...
- LeetCode 599: 两个列表的最小索引总和 Minimum Index Sum of Two Lists
题目: 假设 Andy 和 Doris 想在晚餐时选择一家餐厅,并且他们都有一个表示最喜爱餐厅的列表,每个餐厅的名字用字符串表示. Suppose Andy and Doris want to cho ...
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
- Java实现 LeetCode 64 最小路径和
64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
随机推荐
- Js之DateFormat工具类
/** * 对Date的扩展,将Date转化为指定格式的String * 年(y).季度(q).月(M).日(d).小时(h).分(m).秒(s)可以用1-2个占位符 * 示例: * FormatDa ...
- jenkins汉化
插件: Localization: Chinese (Simplified) locale plugin(或者是这个版本不一样,名字不一样) 可以直接安装这个插件,然后走最后一步设置即可. 由于安装失 ...
- [人物存档]【AI少女】【捏脸数据】1223今日份的推荐
点击下载(城通网盘):AISChaF_20191112214754919.png 点击下载(城通网盘):AISChaF_20191111205924765.png
- 获取网卡速率,cpu使用率
];//获取网卡名称 PerformanceCounter NetworkR = new PerformanceCounter("Network Interface", " ...
- flask框架(五): @app.route和app.add_url_rule参数
@app.route和app.add_url_rule参数: rule, URL规则 view_func, 视图函数名称 defaults=None, 默认值,当URL中无参数,函数需要参数时,使用d ...
- DelayQueue实现延迟队列
public class Q { public static void main(String[] args) throws Exception { DelayQueue<Order> o ...
- 微信小程序_(组件)scroll-view可滚动视图
微信小程序scroll-view组件官方文档 传送门 提前准备:使用<view>组件制作五条撑满的横向区域 <!--index.wxml--> Cynical丶Gary < ...
- easyui datagrid的API
本文可以当做api来使用 动态编辑用到DOM解析的话参考 http://www.w3school.com.cn/xmldom/dom_htmlcollection.asp 使用方法(Usage Exa ...
- Partial Dependence Plot
Partial Dependence就是用来解释某个特征和目标值y的关系的,一般是通过画出Partial Dependence Plot(PDP)来体现. PDP是依赖于模型本身的,所以我们需要先训练 ...
- Leetcode题目33.搜索旋转排序数组(中等)
题目描述: 假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 搜索一个给定的目标值,如果数组中存在 ...