视觉SLAM关键方法总结
点“计算机视觉life”关注,置顶更快接收消息!
最近在做基于激光信息的机器人行人跟踪发现如果单独利用激光信息很难完成机器人对行人的识别、跟踪等功能,因此考虑与视觉融合的方法,这样便可以充分利用激光雷达提供的精确位置信息及视觉提供的丰富纹理、颜色等场景信息。以下是最近调研视觉SLAM中的实现方法的总结,包括三方面内容:姿态计算、闭环检测、BA优化。
姿态计算
一、通过提取图像的特征描述子,如ORB、SURF和SIFT等特征描述子,然后通过RANSAC算法进行图像匹配去除匹配点中的外点,再通过将二维点对映射到三维之后,便可以利用PnP或ICP算法计算相机位姿。基于特征提取的位姿计算算法对场景有一定的要求,在无纹理场景会出现位姿计算失败的情形。
二、直接图像匹配方法:直接图像匹配并不对图片进行特征提取,核心思想是在旋转坐标系下,基于相机一致性的假设,在相机的刚体变换已知的情况下,利用相机变换矩阵将目标图片投影到当前图片上,其像素之间的差异应该最小,将姿态计算转换为加权最小二乘问题。直接图像匹配算法的计算效率很高,不依赖GPU,具有很高的理论和商用价值。
闭环检测
闭环检测算法指的是通过检测算法检测出之前访问过的场景。如图1所示,当机器人在移动过程中,特别是在探索大面积的场景时,由于模型的不确定性以及设备的噪声,不确定性会逐渐增长。通过引入闭环检测技术,识别出历史访问过的场景以增加位姿之间的约束,可以很好的减少这种不确定性。

闭环检测方法有:
一、最简单的闭环检测算法是将新检测出来的关键帧和过去所有的关键帧一一进行比较,虽然这种方法能比较好的检测出当前场景是否在之前出现过,但是在大规模场景下,机器人往往有成千上万个关键帧,这种方法检测效率及其底下,不能再实际场景中使用。
二、通过将图像中的特征和整个地图中的路标对应起来,然后建立一个所有路标的数据库,通过使用路标分类器来加快场景识别速度。比如讲所有路标构建成一棵KD-Tree,当新添加一帧关键帧时,将关键帧在KD-Tree中进行检索,从中检索之前出现过的场景。
三、基于视觉词袋的闭环检测方法,这种方法通过将特征描述子抽象成词汇,通过TF-IDF方法识别出现过的场景。如图2所示,是闭环检测中基于词袋模型流程图。使用视觉词袋的方法效率很高,可用在大规模地图的创建上。

BA优化
一、问题阐述:同时对三维点位置和相机参数进行非线性优化。

二、LM法的原理与优势:
原理:是一种“信赖域”的方法,当收敛速度较快时,增大信赖域使算法趋向于高斯牛顿法;当收敛速度较慢时,减小信赖域使算法趋向于最速下降法。
优势:速度快;可以在距离初始值较远处得到最优解。
SLAM优化算法对比
| 算法 | 缺点 | 优点 |
|---|---|---|
| KF/EKF | 假设噪声为高斯分布,在高维状态空间时计算效率较低,不适合大规模场景的地图构建 | 原理简单,小场景下收敛性好。 |
| PF | 会不可避免出现粒子退化现象,每个粒子需包含整张地图信息导致不适合大场景地图构建 | 将运动方程表示为一组粒子,通过蒙特卡罗方法求解,能够处理非线性非高斯噪声。 |
| EM | 计算量大,不能用于大规模场景 | 有效解决了数据关联问题 |
| 图优化 | 对闭环检测算法的要求严格 | 出现多种图优化框架,能够有效解决滤波器算法的缺陷,能用于大规模场景的地图创建 |
推荐阅读
如何从零开始系统化学习视觉SLAM?
从零开始一起学习SLAM | 为什么要学SLAM?
从零开始一起学习SLAM | 学习SLAM到底需要学什么?
从零开始一起学习SLAM | SLAM有什么用?
从零开始一起学习SLAM | C++新特性要不要学?
从零开始一起学习SLAM | 为什么要用齐次坐标?
从零开始一起学习SLAM | 三维空间刚体的旋转
从零开始一起学习SLAM | 为啥需要李群与李代数?
从零开始一起学习SLAM | 相机成像模型
从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?
从零开始一起学习SLAM | 神奇的单应矩阵
从零开始一起学习SLAM | 你好,点云
从零开始一起学习SLAM | 给点云加个滤网
从零开始一起学习SLAM | 点云平滑法线估计
从零开始一起学习SLAM | 点云到网格的进化
从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
从零开始一起学习SLAM | 掌握g2o顶点编程套路
从零开始一起学习SLAM | 掌握g2o边的代码套路
零基础小白,如何入门计算机视觉?
SLAM领域牛人、牛实验室、牛研究成果梳理
我用MATLAB撸了一个2D LiDAR SLAM
可视化理解四元数,愿你不再掉头发
最近一年语义SLAM有哪些代表性工作?
视觉SLAM技术综述
汇总 | VIO、激光SLAM相关论文分类集锦
研究SLAM,对编程的要求有多高?
2018年SLAM、三维视觉方向求职经验分享
深度学习遇到SLAM | 如何评价基于深度学习的DeepVO,VINet,VidLoc?
视觉SLAM关键方法总结
视觉SLAM关键方法总结的更多相关文章
- SLAM学习笔记 - 视觉SLAM方法资源汇总
工具类: ros框架 linux系列教程 vim Eigen Eigen快速入门 Pangolin Pangolin安装与使用 数据集: TUM 数据格式 提供pyt ...
- 如何从零开始系统化学习视觉SLAM?
由于显示格式问题,建议阅读原文:如何从零开始系统化学习视觉SLAM? 什么是SLAM? SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻 ...
- 视觉SLAM中的深度估计问题
一.研究背景 视觉SLAM需要获取世界坐标系中点的深度. 世界坐标系到像素坐标系的转换为(深度即Z): 深度的获取一共分两种方式: a)主动式 RGB-D相机按照原理又分为结构光测距.ToF相机 To ...
- 视觉SLAM技术应用
视觉SLAM技术应用 SLAM技术背景 SLAM技术全称Simultaneous localization and mapping,中文为"同时定位与地图构建".SLAM可以在未知 ...
- (转) SLAM系统的研究点介绍 与 Kinect视觉SLAM技术介绍
首页 视界智尚 算法技术 每日技术 来打我呀 注册 SLAM系统的研究点介绍 本文主要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我 ...
- 视觉SLAM的数学表达
相机是在某些时刻采集数据的,所以只关心这些时刻的位置和地图. 就把这一段时间的运动变成了李三时刻 t=1,2,...K当中发生的事情. 在这些事可,x表示机器自身的位置. x1,x2,x3,x4... ...
- 视觉SLAM中相机详解
视觉SLAM中,通常是指使用相机来解决定位和建图问题. SLAM中使用的相机往往更加简单,不携带昂贵的镜头,以一定的速率拍摄周围的环境,形成一个连续的视频流. 相机分类: 单目相机:只是用一个摄像头进 ...
- 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析
原文地址:http://www.cnblogs.com/zjiaxing/p/5548265.html 在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/d ...
- 视觉slam领域经典综述和具体应用场景
一.经典综述文章 1. Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: part I[J]. IEEE robot ...
随机推荐
- Redis ZSet 有序集合
有序集合类型与集合类型的区别就是他是有序的.有序集合是在集合的基础上为每一个元素关联一个分数,这就让有序集合不仅支持插入,删除,判断元素是否存在等操作外,还支持获取分数最高/最低的前N个元素.有序集合 ...
- mysql每次update数据,自动更新对应表中时间字段
mysql 已经创建完成表的情况下, 使得其中的时间字段 在每次 uodate 数据的时候 自动更新事件, 运行如下sql ALTER TABLE tab_name MODIFY COLUMN upd ...
- 乐字节Java变量与数据结构之二:Java常量与变量
大家好,小乐又来给大家讲述Java基础知识.上次说了乐字节Java变量与数据类型之一:Java编程规范,关键字与标识符,这次将接着往下说,谈谈Java常量与变量. 1.常量 1).定义 在程序执行的过 ...
- php实现微信小程序登录
以上是官方的流程介绍,已经说的很详细了,现在简单介绍一下流程 前端通过wx.login生成code传递给后端,后端通过提交Appid + appSecret + code 到微信方服务器 获取 ses ...
- python学习-22 字符串格式化
格式化包括:百分号方式和format方式 1.百分号 - %s (%.4s 表示截取了4个字符) 传单个值: 例如: print('i am %s sex boy is ljj'%123) 运 ...
- mysql 行(记录)的详细操作
阅读目录 一 介绍 二 插入数据INSERT 三 更新数据UPDATE 四 删除数据DELETE 五 查询数据SELECT 六 权限管理 一 介绍 MySQL数据操作: DML =========== ...
- Django之ORM相关操作
一般操作 常用的13个操作 <1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 <3> get(** ...
- 【规律】Cunning Friends
Cunning Friends 题目描述 Anthony and his friends Ben and Chris decided to play a game. They have N piles ...
- js 中的 深拷贝与浅拷贝
js在平时的项目中,赋值操作是最多的:比如说: var person1 = { name:"张三", age:18, sex:"male", height:18 ...
- JDBC 复习2 存取mysql 大数据
大数据也称之为LOB(Large Objects),LOB又分为:clob和blob,clob用于存储大文本,blob用于存储二进制数据 mysql的大数据分为2种 blob 和 text ,没有cl ...