layout: post

title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- 最短路

- Dijkstra

- 图论

- 训练指南


Airport Express

UVA - 11374

题意

机场快线有经济线和商业线,现在分别给出经济线和商业线的的路线,现在只能坐一站商业线,其他坐经济线,问从起点到终点的最短用时是多少,还有路线是怎样的;

题解

预处理出起点到所有站的最短距离和终点到所有站的最短距离,枚举要坐的那趟商业线,然后里面最小的就是答案了;

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=550;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
struct Edge{
int from,to,dist;
};
struct HeapNode{
int d,u;
bool operator <(const HeapNode& rhs)const{
return d>rhs.d;
}
};
struct Dijkstra{
int n,m; //点数和边数 点编号0~N-1
vector<Edge>edges;
vector<int>G[maxn];
bool done[maxn];
int d[maxn];
int p[maxn]; void init(int n){
this->n=n;
for(int i=0;i<n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int dist){
edges.push_back((Edge){from,to,dist});
m=edges.size();
G[from].push_back(m-1);
}
void dijkstra(int s){
priority_queue<HeapNode>Q;
for(int i=0;i<n;i++)d[i]=inf;
d[s]=0;
memset(done,0,sizeof(done));
Q.push((HeapNode){0,s});
while(!Q.empty()){
HeapNode x=Q.top();Q.pop();
int u=x.u;
if(done[u])continue;
done[u]=true;
for(int i=0;i<G[u].size();i++){
Edge& e=edges[G[u][i]];
if(d[e.to]>d[u]+e.dist){
d[e.to]=d[u]+e.dist;
p[e.to]=G[u][i];
Q.push((HeapNode){d[e.to],e.to});
}
}
}
} void GetShortestPaths(int s,int* dist,vector<int>* paths){//paths是二维链表
dijkstra(s);
for(int i=0;i<n;i++){
dist[i]=d[i];
paths[i].clear();
int t=i;
paths[i].push_back(t);
while(t!=s){
paths[i].push_back(edges[p[t]].from);
t=edges[p[t]].from;
}
reverse(paths[i].begin(),paths[i].end());
}
}
}; Dijkstra solver;
int d1[maxn],d2[maxn];
vector<int>paths1[maxn],paths2[maxn];
int main()
{
// std::ios::sync_with_stdio(false);
// std::cin.tie(0);
// std::cout.tie(0);
int kase=0,N,S,E,M,K,X,Y,Z;
while(scanf("%d%d%d%d", &N, &S, &E, &M) == 4) {
solver.init(N);
S--;E--;
for(int i=0;i<M;i++){
scanf("%d%d%d", &X, &Y, &Z); X--; Y--;
solver.AddEdge(X,Y,Z);
solver.AddEdge(Y,X,Z);
}
solver.GetShortestPaths(S,d1,paths1);
solver.GetShortestPaths(E,d2,paths2);
int ans=d1[E];
vector<int>path=paths1[E];
int midpoint=-1;
scanf("%d", &K);
for(int i=0;i<K;i++){
scanf("%d%d%d", &X, &Y, &Z); X--; Y--;
for(int j=0;j<2;j++){
if(d1[X]+d2[Y]+Z<ans){
ans=d1[X]+d2[Y]+Z;
path=paths1[X];
for(int p=paths2[Y].size()-1;p>=0;p--)
path.push_back(paths2[Y][p]);
midpoint=X;
}
swap(X,Y);
}
} if(kase != 0) printf("\n");
kase++;
for(int i = 0; i < path.size()-1; i++) printf("%d ", path[i]+1);
printf("%d\n", E+1);
if(midpoint == -1) printf("Ticket Not Used\n"); else printf("%d\n", midpoint+1);
printf("%d\n", ans);
}
return 0;
}

训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)的更多相关文章

  1. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  2. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  3. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  4. 训练指南 UVA - 11419(二分图最小覆盖数)

    layout: post title: 训练指南 UVA - 11419(二分图最小覆盖数) author: "luowentaoaa" catalog: true mathjax ...

  5. 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y))

    layout: post title: 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y)) author: "luowentaoaa" cata ...

  6. 训练指南 UVA - 11354(最小生成树 + 倍增LCA)

    layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...

  7. 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

    layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...

  8. uva 11374 最短路+记录路径 dijkstra最短路模板

    UVA - 11374 Airport Express Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %l ...

  9. 算法竞赛入门经典训练指南——UVA 11300 preading the Wealth

    A Communist regime is trying to redistribute wealth in a village. They have have decided to sit ever ...

随机推荐

  1. [USACO06NOV]玉米田Corn Fields

    题面描述 状压dp. 设\(f[i][sta]\)为第\(i\)层状态为\(sta\)的方案数. 然后每次可以枚举上一层的状态以及本层的状态,然后如果不冲突且满足地图的要求,则转移. 时间复杂度\(O ...

  2. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  3. BZOJ3236: [Ahoi2013]作业 树状数组维护 莫队

    水果~~~~ 关于四个while可行性的证明:区间有正确性所以不管那团小东西用没有duang~反它最终总会由于两次覆盖二准确 关于区间种数可行性的证明:他会在0 1间(或两边)来回跳动(过程中),最终 ...

  4. CMU Bomblab 答案

    室友拉我做的... http://csapp.cs.cmu.edu/3e/labs.html Border relations with Canada have never been better. ...

  5. 使用HTML实现对汉字拼音的支持

    <!DOCTYPE HTML><html> <head> <meta charset="utf-8"> <title>无 ...

  6. jw player学习笔记----跨域请求

    需求来源:播放器皮肤文件请求不到,被限制了. 参考官网解决方案: http://www.longtailvideo.com/support/jw-player/28844/crossdomain-fi ...

  7. PostgreSQL(Linux)安装、启动、停止、重启

    If we don't already have PostgreSQL installed, we must install it. $ sudo apt-get install postgresql ...

  8. L3-003. 社交集群(并查集)

    L3-003. 社交集群 时间限制 1000 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 在社交网络平台注册时,用户通常会输入自己的兴趣爱好, ...

  9. uoj198【CTSC2016】时空旅行

    传送门:http://uoj.ac/problem/198 [题解] 首先y.z是没有用的.. 然后式子就是w = (x0-xi)^2+ci的最小值,化出来可以变成一个直线的形式. 然后我们可以用线段 ...

  10. Java序列化与反序列化是什么?为什么需要序列化与反序列化?如何实现Java序列化与反序列化?

    Java序列化与反序列化是什么?为什么需要序列化与反序列化?如何实现Java序列化与反序列化?本文围绕这些问题进行了探讨.  1.Java序列化与反序列化  Java序列化是指把Java对象转换为字节 ...