There are N (1 ≤ N ≤ 105) cities on land, and there are N - 1 wires connecting the cities. Therefore, each city can transmit electricity to all other cities by these wires.

Dark_Sun made a decision to build a nuclear power plant to supply electricity for all the cities. The nuclear power plant can be built in any city, but the cost for the electricity transmission is very strange. Let the weight of wire which connects city u and city v is E(u, v) (|E(u, v)| < 109). If the power plant is built in city x, the cost for electricity transmission from city x to city y is D(x, y) = (E(x, s1) + E(s1, s2) + ... + E(sp, y))k, where {x, s1, s2, ..., sp, y} is the path from x to y. Because of the bug of the computer, the total cost for building a nuclear power plant in city x is Σ(D(x, i)) mod 100000007 (0 ≤ i < N, ix), and the total cost is obviously not a negative number.

Dark_Sun asks you to write a program to calculate the minimum total cost.

Input

Input will consist of multiple test cases.

The first line of each test case contains two integers N, K (1 ≤ N ≤ 105,0 ≤ K ≤ 10).

The next N - 1 lines, each line contains three integers u, v, w (0 ≤ u, v < N, |w| < 109, uv), indicating E(u, v) is w.

Output

For each case, output one line with one integer, indicating the minimum total cost.

Sample Input

3 2
0 1 2
1 2 2

Sample Output

8

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 100005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 100000007;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n, K;
struct node {
int u, v;
ll w;
int nxt;
}e[maxn<<1]; ll dp[maxn][12];
int head[maxn];
int tot;
ll C[14][14]; void init() {
C[0][0] = C[1][1] = C[1][0] = 1;
for (int i = 2; i <= 13; i++) {
C[i][i] = C[i][0] = 1;
for (int j = 1; j < i; j++) {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
C[i][j] %= mod;
}
}
} void addedge(int u, int v, ll w) {
e[++tot].u = u; e[tot].v = v; e[tot].w = w; e[tot].nxt = head[u]; head[u] = tot;
} void dfs1(int u, int fa) {
// ms(dp[u]);
dp[u][0] = 1;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (v == fa)continue;
dfs1(v, u);
for (int k = 0; k <= K; k++) {
ll ut = 1;
for (int j = 0; j <= k; j++) {
dp[u][k] = (dp[u][k] + C[k][j] * dp[v][k - j] % mod*ut%mod) % mod;
dp[u][k] = (dp[u][k] % mod + mod) % mod;
ut = ut * e[i].w%mod;
}
}
}
return;
} void dfs2(int u, int fa) {
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (v == fa)continue;
ll tmp[20];
for (int k = 0; k <= K; k++) {
tmp[k] = dp[u][k];
ll ut = 1;
for (int j = 0; j <= k; j++) {
tmp[k] = (tmp[k] - C[k][j] * dp[v][k - j] % mod*ut%mod) % mod;
tmp[k] = (tmp[k] % mod + mod) % mod;
ut = ut * e[i].w%mod;
}
}
for (int k = 0; k <= K; k++) {
ll ut = 1;
for (int j = 0; j <= k; j++) {
dp[v][k] = (dp[v][k] + C[k][j] * tmp[k - j] % mod*ut%mod) % mod;
dp[v][k] = (dp[v][k] % mod + mod) % mod;
ut = ut * e[i].w%mod;
}
}
}
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (v == fa)continue;
dfs2(v, u);
}
} int main()
{
// ios::sync_with_stdio(0);
init();
while (scanf("%d%d",&n,&K)!=EOF) {
// ms(e);
ms(head); tot = 0;
ms(dp); for (int i = 1; i < n; i++) {
int u, v; rdint(u); rdint(v);
ll w; rdllt(w); u++; v++;
addedge(u, v, w); addedge(v, u, w);
}
if (K == 0) {
cout << n - 1 << endl;
continue;
}
dfs1(1, -1); dfs2(1, -1);
ll ans = -inf;
for (int i = 1; i <= n; i++) {
if (ans == -inf || ans > dp[i][K])ans = dp[i][K];
}
printf("%lld\n", 1ll * ans);
}
return 0;
}

Nuclear Power Plant ZOJ - 3840 树形dp的更多相关文章

  1. ZOJ 3626(树形DP+背包+边cost)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3626 题目大意:树中取点.每过一条边有一定cost,且最后要回 ...

  2. ZOJ 3805 (树形DP)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5337 题目大意:方块连接,呈树形.每个方块有两种接法,一种接在父块 ...

  3. ZOJ 3201 树形dp+背包(简单题)

    #include<cstdio> #include<vector> #include<cstring> #include<iostream> using ...

  4. ZOJ 3188 ZOJ 3188 Treeland Exhibition(树形DP)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3278 题意:给出一棵树,找出一个不大于长度为m的链,使得其他点到该链 ...

  5. 2014 Super Training #9 E Destroy --树的直径+树形DP

    原题: ZOJ 3684 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3684 题意: 给你一棵树,树的根是树的中心(到其 ...

  6. 【转】【DP_树形DP专辑】【9月9最新更新】【from zeroclock's blog】

    树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树.三叉树.静态搜索树.AV ...

  7. 【DP_树形DP专题】题单总结

    转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...

  8. hdu 4756 MST+树形dp ****

    题意:给你n(n = 1000)个二维点,第一个点是power plant,还有n - 1个点是dormitories.然后现在知道有一条寝室到寝室的边是不能连的,但是我们不知道是哪条边,问这种情况下 ...

  9. poj2378 树形DP

    C - 树形dp Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit ...

随机推荐

  1. 一次 Mysql 字符集的报错,最后让我万马奔腾!!!

    wuba---深圳---龙岗周边----3000元--------- wuba---深圳---龙岗周边----5000元--------- wuba---深圳---龙岗周边----8000元----- ...

  2. fgets、gets和scanf的区别

    gets()从stdin流中读取字符串,直至接受到换行符或EOF时停止,并将读取的结果存放在buffer指针所指向的字符数组中.换行符不作为读取串的内容,读取的换行符被转换为null值,并由此来结束字 ...

  3. MySQL的blob类型

    MySQL中的Blob类型 MySQL中存放大对象的时候,使用的是Blob类型.所谓的大对象指的就是图片,比如jpg.png.gif等格式的图片,文档,比如pdf.doc等,以及其他的文件.为了在数据 ...

  4. SolrCloud中的文件与Collection管理

    转载请出自出处:http://eksliang.iteye.com/blog/2124078 http://eksliang.iteye.com/ 一.内嵌启动SolrCloud时端口默认分配 当 S ...

  5. apt-get update 时的问题 W:Failed to fetch gzip:/var/lib/apt/lists/partial...解决办法

    http://askubuntu.com/questions/149454/upgrade-from-11-04-to-11-10-getting-wfailed-to-fetch-gzip 这个问题 ...

  6. Angular26 ng-content和ng-container、投影的使用

    1 准备工作 1.1 搭建angular环境 技巧01:本博文基于angular5 1.3 创建一个angular项目 技巧01:根据业务划分模块,每个模块都设定一个主组件 技巧02:利用路由实现模块 ...

  7. jsoup 的简单应用

    导入相关jar包 package jsoup.zr.com.utils; import java.io.IOException; import java.util.List; import org.j ...

  8. 面试题:HashMap和ConcurrentHashMap的区别,HashMap的底层源码。

    Hashmap本质是数组加链表.根据key取得hash值,然后计算出数组下标,如果多个key对应到同一个下标,就用链表串起来,新插入的在前面. ConcurrentHashMap:在hashMap的基 ...

  9. OpenCV---resize

    转自http://www.cnblogs.com/korbin/p/5612427.html 在图像处理过程中,有时需要把图像调整到同样大小,便于处理,这时需要用到图像resize() 原函数void ...

  10. Nginx 模块开发

    Nginx 模块概述 Nginx 模块有三种角色: 处理请求并产生输出的 Handler 模块 : 处理由  Handler  产生的输出的 Filter (滤波器)模块: 当出现多个后台 服务器时, ...