morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法

一、O(nlogn)的LIS(最长上升子序列)

设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k]
= A[t]。

不过这种方法要注意,D[]中并不是我们所求的最长上升子序列

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int search(int *a,int len,int n)
{
int right=len,left=0,mid=(left+right)/2;
while(left<=right)
{
if (n>a[mid]) left=mid+1;
else if (n<a[mid]) right=mid-1;
else return mid;
mid=(left+right)/2;
}
return left;
}//二分查找 int main()
{
int a[1000]={0},b[1000]={0};
int n,i,j,mid,len;//len用来储存每次循环结束后已经求出值的元素的最大下标
scanf("%d",&n);
for (i=1; i<=n; i++)
scanf("%d",&a[i]);
b[1]=a[1];
b[0]=-1;
len=1;//从第一位开始,目前只有第一位,所以len=1
for (i=1;i<=n;i++)
{
j=search(b,len,a[i]);
b[j]=a[i];
if (j>len) len=j;//更新len,由二分查找可知 ,len其实只须+1.....
}
printf("%d",len);
return 0;
}

二、O(nlogn)的LCS

其实就是把两个序列化成一个序列,然后做一遍上述O(nlogn)的LIS即可

转换方法如下:

有样例

7 8

1 7 5 4 8 3 9

1 4 3 5 6 2 8 9

数组a中 1  2  3  4  5  6  7

分别对应1  7  5  4  8  3  9 不妨在数组b中的相同的数用在数组a中的 下标来表示(没有出现的用0)

由上述描述则数组b原来为: 1  4  3  5  6  2  8  9

可以表示为:                      1  4   6  3  0  0  5  7

然后对处理后的数组进行一遍LIS,LIS中的len即为所求

注意:这种O(nlogn)的LCS只适用于两两互不相同的两个序列之中,不然会退化(但可以维护二叉搜索树,然而我并不会/(ㄒoㄒ)/~~),但这种LIS是可重的

下面是代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[100000]={0},c[100000]={0},d[100000]={0}; int search(int *a,int len,int n)
{
int right=len,left=0,mid=(left+right)/2;
while(left<=right)
{
if (n>a[mid]) left=mid+1;
else if (n<a[mid]) right=mid-1;
else return mid;
mid=(left+right)/2;
}
return left;
}//二分查找 int main()
{
int n,m,i,j,mid,len;
scanf("%d%d",&n,&m);
for (i=1; i<=n; i++)
{
scanf("%d",&a[i]);
c[a[i]]=i;
}
for (i=1; i<=m; i++)
{
scanf("%d",&a[i]);
a[i]=c[a[i]];
}
d[1]=a[1];
d[0]=-1;
len=1;
for (i=1;i<=m;i++)
{
j=search(d,len,a[i]);
d[j]=a[i];
if (j>len) len=j;
}
printf("%d",len);
return 0;
}

此处感谢morestep学长的倾情讲解

O(nlogn)LIS及LCS算法的更多相关文章

  1. O(nlogn)实现LCS与LIS

    序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...

  2. LIS和LCS LCIS

    首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...

  3. nlogn LIS模板

    nlogn 模板 最长上升 #include<bits/stdc++.h> using namespace std; ; int n,x,y,a[N],num[N],d[N],len; / ...

  4. LCS算法

    转自:http://hzzy-010.blog.163.com/blog/static/79692381200872024242126/  好详细~~~也十分好理解~~~ 最长公共子序列问题(非连续的 ...

  5. 关于LIS和LCS问题的o(nlogn)解法

    o(n^2)解法就不赘述了,直接解释o(nlogn)解法 LIS最长递增子序列: 先明确一个结论:在长度最大为len的递增序列里若末尾元素越小,该递增序列越容易和后面的子序列构造出一个更长的递增子序列 ...

  6. LIS与LCS的nlogn解法

    LIS(nlogn) #include<iostream> #include<cstdio> using namespace std; ; int a[maxn]; int n ...

  7. LIS的优化算法O(n log n)

    LIS的nlogn的优化:LIS的优化说白了其实是贪心算法,比如说让你求一个最长上升子序列把,一起走一遍. 比如说(4, 2, 3, 1, 2,3,5)这个序列,求他的最长上升子序列,那么来看,如果求 ...

  8. LCS 算法实现

    动态规划算法 #include <iostream> #include <string.h> #include <algorithm> #include <m ...

  9. Levenshtein Distance + LCS 算法计算两个字符串的相似度

    //LD最短编辑路径算法 public static int LevenshteinDistance(string source, string target) { int cell = source ...

随机推荐

  1. PAT 1018. 锤子剪刀布 (20)

    现给出两人的交锋记录,请统计双方的胜.平.负次数,并且给出双方分别出什么手势的胜算最大. 输入格式: 输入第1行给出正整数N(<=105),即双方交锋的次数.随后N行,每行给出一次交锋的信息,即 ...

  2. 探索Windows 8.1 Update 新功能点

    Windows 8.1 Update 已经使用一段时间了,整体感觉比Windows 8.1 方便了不少,尤其是对鼠标用户来说更是进行了很多优化. 应用磁贴尺寸 在应用磁贴点击鼠标右键,有小.中.宽.大 ...

  3. [转]Gson过滤字段

    原文地址:http://my.oschina.net/orgsky/blog/368768 摘要 Gson过滤字段 Gson过滤字段 Gson 过滤 字段 属性 目录[-] 最简单的用法 方法1:排除 ...

  4. [转]使用 google gson 转换Timestamp或Date类型为JSON字符串.

    创建类型适配类: import java.lang.reflect.Type; import java.sql.Timestamp; import java.text.DateFormat; impo ...

  5. unity3d 音频无缝循环

    在我做赛车漂移的时候,漂移的声音断断续续的,搞得我很郁闷 大家可以随便找个音效然后循环播放去仔细听 你会发现当音效播放完成一次之后循环播放第二次时会停顿一下 我做赛车漂移如果中途停顿了体验是非常不好的 ...

  6. Vue学习笔记-1

    前言 本文不是Vue.js的教程,只是一边看官网Vue的教程文档一边记录并总结学习过程中遇到的一些问题和思考的笔记. 1.vue和avalon一样,都不支持VM初始时不存在的属性 而在Angular里 ...

  7. 打磨程序员的专属利器——命令行&界面

    工欲善其事,必先利其器,程序员更是如此,如果没有一套与自己思维同步的工具,将非常难受并且编码效率会非常低. 但十个程序员就有对工具的十种不同理解,本人现在冒然将自己的“工具箱”拿出来晒晒.若对大家没帮 ...

  8. ASP.NET Web API(三):安全验证之使用摘要认证(digest authentication)

    在前一篇文章中,主要讨论了使用HTTP基本认证的方法,因为HTTP基本认证的方式决定了它在安全性方面存在很大的问题,所以接下来看看另一种验证的方式:digest authentication,即摘要认 ...

  9. 如何快速从一个Storage Account拷贝到另一个账号

    当您有两个Storage Account的时候,怎样快速做到从一个账号拷贝到另一个账号呢.当拷贝的文件比较,例如100多G(VHD文件). http://code.msdn.microsoft.com ...

  10. matlab 画图中线型及颜色设置

    matlab受到控制界广泛接受的一个重要原因是因为它提供了方便的绘图 功能.本章主要介绍2维图形对象的生成函数及图形控制函数的使用方 法,还将 简单地介绍一些图形的修饰与标注函数及操作和控制MATLA ...