morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法

一、O(nlogn)的LIS(最长上升子序列)

设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k]
= A[t]。

不过这种方法要注意,D[]中并不是我们所求的最长上升子序列

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int search(int *a,int len,int n)
{
int right=len,left=0,mid=(left+right)/2;
while(left<=right)
{
if (n>a[mid]) left=mid+1;
else if (n<a[mid]) right=mid-1;
else return mid;
mid=(left+right)/2;
}
return left;
}//二分查找 int main()
{
int a[1000]={0},b[1000]={0};
int n,i,j,mid,len;//len用来储存每次循环结束后已经求出值的元素的最大下标
scanf("%d",&n);
for (i=1; i<=n; i++)
scanf("%d",&a[i]);
b[1]=a[1];
b[0]=-1;
len=1;//从第一位开始,目前只有第一位,所以len=1
for (i=1;i<=n;i++)
{
j=search(b,len,a[i]);
b[j]=a[i];
if (j>len) len=j;//更新len,由二分查找可知 ,len其实只须+1.....
}
printf("%d",len);
return 0;
}

二、O(nlogn)的LCS

其实就是把两个序列化成一个序列,然后做一遍上述O(nlogn)的LIS即可

转换方法如下:

有样例

7 8

1 7 5 4 8 3 9

1 4 3 5 6 2 8 9

数组a中 1  2  3  4  5  6  7

分别对应1  7  5  4  8  3  9 不妨在数组b中的相同的数用在数组a中的 下标来表示(没有出现的用0)

由上述描述则数组b原来为: 1  4  3  5  6  2  8  9

可以表示为:                      1  4   6  3  0  0  5  7

然后对处理后的数组进行一遍LIS,LIS中的len即为所求

注意:这种O(nlogn)的LCS只适用于两两互不相同的两个序列之中,不然会退化(但可以维护二叉搜索树,然而我并不会/(ㄒoㄒ)/~~),但这种LIS是可重的

下面是代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[100000]={0},c[100000]={0},d[100000]={0}; int search(int *a,int len,int n)
{
int right=len,left=0,mid=(left+right)/2;
while(left<=right)
{
if (n>a[mid]) left=mid+1;
else if (n<a[mid]) right=mid-1;
else return mid;
mid=(left+right)/2;
}
return left;
}//二分查找 int main()
{
int n,m,i,j,mid,len;
scanf("%d%d",&n,&m);
for (i=1; i<=n; i++)
{
scanf("%d",&a[i]);
c[a[i]]=i;
}
for (i=1; i<=m; i++)
{
scanf("%d",&a[i]);
a[i]=c[a[i]];
}
d[1]=a[1];
d[0]=-1;
len=1;
for (i=1;i<=m;i++)
{
j=search(d,len,a[i]);
d[j]=a[i];
if (j>len) len=j;
}
printf("%d",len);
return 0;
}

此处感谢morestep学长的倾情讲解

O(nlogn)LIS及LCS算法的更多相关文章

  1. O(nlogn)实现LCS与LIS

    序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...

  2. LIS和LCS LCIS

    首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...

  3. nlogn LIS模板

    nlogn 模板 最长上升 #include<bits/stdc++.h> using namespace std; ; int n,x,y,a[N],num[N],d[N],len; / ...

  4. LCS算法

    转自:http://hzzy-010.blog.163.com/blog/static/79692381200872024242126/  好详细~~~也十分好理解~~~ 最长公共子序列问题(非连续的 ...

  5. 关于LIS和LCS问题的o(nlogn)解法

    o(n^2)解法就不赘述了,直接解释o(nlogn)解法 LIS最长递增子序列: 先明确一个结论:在长度最大为len的递增序列里若末尾元素越小,该递增序列越容易和后面的子序列构造出一个更长的递增子序列 ...

  6. LIS与LCS的nlogn解法

    LIS(nlogn) #include<iostream> #include<cstdio> using namespace std; ; int a[maxn]; int n ...

  7. LIS的优化算法O(n log n)

    LIS的nlogn的优化:LIS的优化说白了其实是贪心算法,比如说让你求一个最长上升子序列把,一起走一遍. 比如说(4, 2, 3, 1, 2,3,5)这个序列,求他的最长上升子序列,那么来看,如果求 ...

  8. LCS 算法实现

    动态规划算法 #include <iostream> #include <string.h> #include <algorithm> #include <m ...

  9. Levenshtein Distance + LCS 算法计算两个字符串的相似度

    //LD最短编辑路径算法 public static int LevenshteinDistance(string source, string target) { int cell = source ...

随机推荐

  1. 见鬼了,swiper

    1.今天不知怎么swiper的onInit函数不起作用,怎么弄都不行: 把以前能行的案例的包都导进去还是不行,但是onSlideChangeEnd可以触发,晕死了.... 不,它触发了一次onInit ...

  2. 深入运用js

    1,eval()函数 这个函数是获取参数的字符串,并将其作为js来处理,所以这里就有可能有人用这个来搞破坏(比如注入JS脚本文件等),所以最好的是方法是尽量少用,或者可以用new function() ...

  3. Javascript中document.execCommand()的用法

    document.execCommand()方法处理Html数据时常用语法格式如下:document.execCommand(sCommand[,交互方式, 动态参数]) 其中:sCommand为指令 ...

  4. vs2015企业版太大了

    安装教程 http://www.cnblogs.com/mephisto/archive/2015/07/22/4666032.html#!comments 新功能 http://news.cnblo ...

  5. [转]nginx+fastcgi+c/c++搭建高性能Web框架

    FROM : http://blog.csdn.net/marising/article/details/3932938 1.Nginx 1.1.安装 Nginx 的中文维基 http://wiki. ...

  6. 如何获取Flickr图片链接地址作为外链图片

    Flickr,雅虎旗下图片分享网站.为一家提供免费及付费数位照片储存.分享方案之线上服务,也提供网络社群服务的平台.其重要特点就是基于社会网络的人际关系的拓展与内容的组织.这个网站的功能之强大,已超出 ...

  7. Use Dapper ORM With ASP.NET Core

    Dapper.NET is not just another ORM tool, it's considered as the king of ORM. Because it's fast, easy ...

  8. 2015/11/9用Python写游戏,pygame入门(8):按钮和游戏结束

    昨天没有更新内容,今天相对多写一些. 因为我们已经基本完成游戏框架,但是游戏结束后,并不知道怎样比较好开始.我本来本着懒的原则,想结束后显示一个黑屏,然后你重新点一下鼠标就重新开始.但是那样实在太不像 ...

  9. weinre 简记

    在入职不久接触了移动端WEB开发,刚开始遇到的问题就是调试的问题.在PC端的时候,我常常纠结在IE与IE之间,主要的兼容问题还是IE一家子和他们的亲戚(啥多核浏览器,也是各种坑不断)之间.IE虽然问题 ...

  10. 新时代的coder如何成为专业程序员

    在移动互联网"泛滥"的今天,越来越多非专业(这里的非专业指的是非计算机专业毕业的程序员)程序员加入到了IT行业中来了,可能是因为移动互联网的火爆导致程序员容易就业而且工资很高,可能 ...