uva 6757 Cup of Cowards
Cup of Cowards (CoC) is a role playing game that has 5 different characters (Mage, Tank, Fighter,
Assassin and Marksman). A team consists of 5 players (one from each kind) and the goal is to kill a
monster with L life points. The monster dies if the total damage it gets is at least L. Each character
has a certain number of allowed hits, each hit has a certain damage and a certain cost (the cost and
damage might be different for each character). The team wants to kill the monster using the minimum
cost so they can perform better in later missions. They want your help to find the minimum cost they
will pay to kill the monster and the damage they should incur on it.
Input
Your program will be tested on one or more test cases. The first line of the input will be a single
integer T, the number of test cases (1 ≤ T ≤ 100). Followed by the test cases, the first line of each
test case contains 1 integer L (0 ≤ L ≤ 1012) representing the life points of the monster. Followed by
5 lines, each one contains 3 integers separated by a single space H D C representing the maximum
number of hits, the damage by each hit and the cost of each hit by one of the characters, respectively
(0 ≤ H ≤ 1, 000), (0 ≤ D, C ≤ 109
) and the sum of the maximum number of hits for all characters will
not be more than 1,000.
Output
For each test case, print a single line which contains 2 space separated integers, the first is the minimum
cost for the hits used to kill the monster and the second is the damage incurred upon the monster. If
there is more than one way to kill the monster using the same minimum cost, select the one with the
least damage and if there is no way to kill the monster print ‘We are doomed!!’ (without the quotes).
Sample Input
2
33
2 3 4
3 1 2
4 3 2
1 7 1
3 4 2
51
3 3 1
4 3 2
2 3 3
3 1 4
5 2 3
Sample Output
19 33
We are doomed!!

貌似中途相遇法,时间2500ms

view code#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long ll;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define iform "%I64d"
const int N = (1<<20)+10;
const ll INF = 1LL<<60;
ll _, L;
ll Min[N<<4],pos[N<<4], x[N<<1], xcnt;
ll d[100], c[100], cnt;
ll damage, cost;
struct node
{
ll v, c;
bool operator < (const node &o) const{
return v>o.v;
}
}one[N], two[N];
bool cmp(const node& a, const node &b)
{
return a.c<b.c;
}
void calc(node o[], int n, ll d[], ll c[], int &cnt)
{
cnt = 0;
for(int i=0; i<n; i++)
{
int k = cnt;
for(int j=0; j<k; j++)
{
if(o[j].v>=L) continue;
o[cnt].v = o[j].v+d[i];
o[cnt].c = o[j].c+c[i];
if(o[cnt].v>=L)
{
if(o[cnt].c<cost) cost = o[cnt].c, damage=o[cnt].v, cnt++;
else if(o[cnt].c==cost && damage>o[cnt].v) damage = o[cnt].v,cnt++;
}
else cnt++;
}
o[cnt].v = d[i];
o[cnt].c = c[i];
if(o[cnt].v>=L)
{
if(o[cnt].c<cost) cost = o[cnt].c, damage=o[cnt].v, cnt++;
else if(o[cnt].c==cost && damage>o[cnt].v) damage = o[cnt].v,cnt++;
}
else cnt++;
}
}
int ocnt, tcnt; void solve()
{
scanf(iform, &L);
ll num, dam, cos;
cnt = 0;
for(int i=1; i<=5; i++)
{
scanf(iform iform iform, &num, &dam, &cos);
ll k = 1;
while(num)
{
ll t = min(k, num);
d[cnt] = dam*t;
c[cnt] = cos*t;
cnt++;
num -= t;
k *= 2;
}
}
xcnt = 0;damage = -1, cost = INF;
ll n =cnt/2, m = cnt-n;
calc(one, n, d, c, ocnt);
calc(two, m, d+n, c+n, tcnt);
sort(one, one+ocnt, cmp);
sort(two, two+tcnt);
int i=0, j=0;
while(j<tcnt && two[j].v>=L) j++;
for(; i<ocnt&&j<tcnt; i++)
{
if(one[i].v>=L) continue;
else
{
while(j<tcnt && one[i].v+two[j].v>=L)
{
ll sumc = one[i].c+two[j].c;
ll sumv = one[i].v+two[j].v;
if(sumc<cost) damage=sumv,cost=sumc;
else if(sumc==cost) damage=sumv;
j++;
}
}
}
if(damage==-1) puts("We are doomed!!");
else cout<<cost<<""<<damage<<endl;
}
int main()
{
// freopen("in.txt", "r", stdin);
cin>>_;
while(_--) solve();
return 0;
}

uva 6757 Cup of Cowards(中途相遇法,貌似)的更多相关文章

  1. 紫书 例题8-3 UVa 1152(中途相遇法)

    这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...

  2. 紫书 习题 8-16 UVa 1618 (中途相遇法)

    暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...

  3. 【uva 1152】4 Values Whose Sum is Zero(算法效率--中途相遇法+Hash或STL库)

    题意:给定4个N元素几个A,B,C,D,要求分别从中选取一个元素a,b,c,d使得a+b+c+d=0.问有多少种选法.(N≤4000,D≤2^28) 解法:首先我们从最直接最暴力的方法开始思考:四重循 ...

  4. LA 2965 Jurassic Remains (中途相遇法)

    Jurassic Remains Paleontologists in Siberia have recently found a number of fragments of Jurassic pe ...

  5. HDU 5936 Difference 【中途相遇法】(2016年中国大学生程序设计竞赛(杭州))

    Difference Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  6. 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  7. 高效算法——J 中途相遇法,求和

    ---恢复内容开始--- J - 中途相遇法 Time Limit:9000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  8. 【UVALive】2965 Jurassic Remains(中途相遇法)

    题目 传送门:QWQ 分析 太喵了~~~~~ 还有中途相遇法这种东西的. 嗯 以后可以优化一些暴力 详情左转蓝书P58 (但可能我OI生涯中都遇不到正解是这个的题把...... 代码 #include ...

  9. uva1152 - 4 Values whose Sum is 0(枚举,中途相遇法)

    用中途相遇法的思想来解题.分别枚举两边,和直接暴力枚举四个数组比可以降低时间复杂度. 这里用到一个很实用的技巧: 求长度为n的有序数组a中的数k的个数num? num=upper_bound(a,a+ ...

随机推荐

  1. 完整的定时任务解决方案Spring集成+定时任务本身管理+DB持久化+集群

    完整的定时任务解决方案Spring集成+定时任务本身管理+DB持久化+集群 maven依赖 <dependency> <groupId>org.quartz-scheduler ...

  2. 开发 web 桌面类程序几个必须关注的细节

    HoorayOS 写了差不多快2年了,在我的坚持下也有一部分人打算着手自己也写套类似的程序,我想我可以提供一点经验. 俗话说细节决定成败,开发2年多来,我看过大大小小类似的程序不下20个,各有优点也各 ...

  3. mysql在Windows下使用mysqldump命令备份数据库

    在cmd窗口中使用mysqldump命令首先需要配置环境变量 1,在计算机中找到MySQL的安装位置,找到MySQL Workbench,比如我的是C:\Program Files\MySQL\MyS ...

  4. ubuntu 搭建开发环境

    一. 安装C/C++程序的开发环境 1. sudo apt-get install build-essential //安装主要编译工具 gcc, g++, make 2. sudo apt-get ...

  5. myeclipse 2015 CI 16发布【附下载】

    2015升级版再次来袭! 更新日志: Slack Integration 新版本集成了Slack,你只需要注册一个Slack帐号然后就可以发送和接收代码片段.你甚至不需要登录Slack就可以直接在Ec ...

  6. sharepoint 数据库说明

    一.WSS_Content 后端内容数据库存储所有网站内容,包括网站的文档或文档库中的文件,列表数据和Web部件属性,以及用户名和权限. 为特定网站的所有数据的内容数据库. 二.SharePoint_ ...

  7. SharePoint 2010 人员选择器搜索范围的限定

    客户AD中用户信息过多,而当前的SharePoint应用中不需要针对所有AD进行筛选,则需要通过STSADM来设置搜索范围: stsadm -o setsiteuseraccountdirectory ...

  8. Android中的Interpolator

    Android中的Interpolator Interpolator用于动画中的时间插值,其作用就是把0到1的浮点值变化映射到另一个浮点值变化. 本文列出Android API提供的Interpola ...

  9. android之HttpClient

    Apache包是对android联网访问封装的很好的一个包,也是android访问网络最常用的类. 下面分别讲一下怎么用HttpClient实现get,post请求. 1.Get 请求 HttpGet ...

  10. C语言中qsort函数的应用

    qsort函数包含在<stdlib.h>的头文件里,本文中排序都是采用的从小到大排序 一.对int类型数组排序 ]; int cmp ( const void *a , const voi ...