传送门

dp好题。

我认为原题的描述已经很清楚了:

你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少。

两种方案不同当且仅当存在至少一个数i满足第i种物品使用的数量不同。


然而我只会O(n2)O(n^2)O(n2)的做法。

然后通过搜题解学会了O(n∗sqrt(n))O(n*sqrt(n))O(n∗sqrt(n))的做法。

简单讲讲。

首先我们需要分布考虑。

对于大于sqrt(n)sqrt(n)sqrt(n)的物品是选不完的,相当于没有数量限制。

而小于sqrt(n)sqrt(n)sqrt(n)的物品是有数量限制的。

但是直接上多重背包效率上天。

因此我们开始考虑如何优化。

先想想dp式子。

f[i][j]=∑f[i−1][j−k∗i]f[i][j]=\sum f[i-1][j-k*i]f[i][j]=∑f[i−1][j−k∗i]

这启发我们按照余数分组维护f[i−1][jf[i-1][jf[i−1][j modmodmod i]i]i]的前缀和来进行优化。

这样前半部分效率是O(n∗sqrt(n))O(n*sqrt(n))O(n∗sqrt(n))的。

继续考虑后半部分如何维护。

后半部分是一个特殊的完全背包问题。

我们可以想象把所有物品都放在序列上。

那么现在有两种更新方式。

  1. 我们把所有物品向后移一个位置
  2. 在队首插入一个最小的数sqrt(n)+1sqrt(n)+1sqrt(n)+1

这就是一种动态转移的思想,这个方法的正确性在于这两种更新方式能够考虑到当前维护所有的序列状态并借此转移出后面的状态。

只是妙不可言。

代码:

#include<bits/stdc++.h>
#define N 100005
#define mod 23333333
#define ll long long
using namespace std;
int n,m,tmp,f[2][N],g[320][N],sum[N];
ll sumg[N],ans=0;
int main(){
	scanf("%d",&n),m=sqrt(n),f[0][0]=g[0][0]=sumg[0]=1;
	for(int i=1;i<=m;++i){
		memset(sum,0,sizeof(sum));
		int mod_cnt=-1;
		tmp^=1;
		for(int j=0;j<=n;++j){
			++mod_cnt;
			if(mod_cnt==i)mod_cnt=0;
			f[tmp][j]=((sum[mod_cnt]+=f[tmp^1][j])%=mod);
			if(j>=i*i)(sum[mod_cnt]+=mod-f[tmp^1][j-i*i])%=mod;
		}
	}
	for(int i=0;i<=m;++i)
		for(int j=0;j<=n;++j){
			if(i&&i+j<=n)(g[i][i+j]+=g[i][j])%=mod;
			if(j+m+1<=n)(g[i+1][j+m+1]+=g[i][j])%=mod;
		}
	for(int i=1;i<=n;++i)for(int j=1;j<=m;++j)(sumg[i]+=g[j][i])%=mod;
	for(int i=0;i<=n;++i)(ans+=1ll*f[tmp][i]*sumg[n-i]%mod)%=mod;
	cout<<ans;
	return 0;
}

2018.09.25 51nod1597 有限背包计数问题(背包+前缀和优化)的更多相关文章

  1. LOJ6089 小Y的背包计数问题 背包、根号分治

    题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...

  2. 2018.09.08 bzoj1531: [POI2005]Bank notes(二进制拆分优化背包)

    传送门 显然不能直接写多重背包. 这题可以用二进制拆分/单调队列优化(感觉二进制好写). 所谓二进制优化,就是把1~c[i]拆分成20,21,...2t,c[i]−2t+1+1" role= ...

  3. 51nod 1597 有限背包计数问题 (背包 分块)

    题意 题目链接 Sol 不会做啊AAA.. 暴力上肯定是不行的,考虑根号分组 设\(m = \sqrt{n}\) 对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下 ...

  4. LOJ6089 小Y的背包计数问题 背包

    正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...

  5. 2018.09.25 poj2068 Nim(博弈论+dp)

    传送门 题意简述:m个石子,有两个队每队n个人循环取,每个人每次取石子有数量限制,取最后一块的输,问先手能否获胜. 博弈论+dp. 我们令f[i][j]f[i][j]f[i][j]表示当前第i个人取石 ...

  6. 2018.09.25 bzoj1856: [Scoi2010]字符串(组合数学)

    传送门 如果有n==m的条件就是卡特兰数. 但现在n不一定等于m. 我们可以考虑用求卡特兰数一样的方法来求答案. 我们知道有一种求卡特兰数的方法是转到二维平面求答案. 这道题就可以这样做. 我们将这个 ...

  7. 2018.09.25 bzoj2286: [Sdoi2011]消耗战(虚树+树形dp)

    传送门 又一道虚树入门题. 这个dp更简单啊. 直接记录每个点到1的距离,简单转移就行了. 代码: #include<bits/stdc++.h> #define N 250005 #de ...

  8. 2018.09.25 bzoj3572: [Hnoi2014]世界树(虚树+树形dp)

    传送门 虚树入门题? 好难啊. 在学习别人的写法之后终于过了. 这道题dp方程很好想. 主要是不好写. 简要说说思路吧. 显然最优值只能够从子树和父亲转移过来. 于是我们先dfs一遍用儿子更新父亲,然 ...

  9. 2018.09.25 codeforces1053E. Euler tour(并查集+st表+模拟)

    传送门 毒瘤细节题. 首先考虑不合法的情况. 先把相同的值配对,这样就构成了一些区间. 那么如果这些区间有相交的话,就不合法了. 如何判断?DZYO安利了一波st表,我觉得很不错. 接着考虑两个相同的 ...

随机推荐

  1. ABAP-BarCode-2-Excel打印二维码

    以前用Excel打印过二维码看板标签,将实现过程备注下. 1.安装控件 安装文件:TBarCodeOffice.exe 2.控件注册 打开Excel,找到[选项] 在打开的界面选择[加载项],在活动应 ...

  2. C++17尝鲜:在 if 和 switch 语句中进行初始化

    初始化语句 在C++17中,类似于 for 语句,在 if 和 switch 语句的判断条件之前也能加上初始化语句,语法形式如下: if (初始化语句; 条件) 语句 else 语句 switch ( ...

  3. 把AVI存在资源中用TAnimate播放

    Animate1.RESName := 'About';  Animate1.Active := True;

  4. JS 实现Json查询的方法实例

    其实很简单,我这部分代码,前一部分是简单的实现如何使用JS写模板,第二个就是具体的实现了JSON查询的一个扩展. 以后查询Json就有了利器了. 代码如下: /*         * 定义模板函数   ...

  5. hibernate中1对1的注解配置

    hibernate中1对1的注解配置分为:外键关联映射和主键关联映射 1.外键配置 //一方@Entity@Table(name="test_classinfo")public c ...

  6. FastDFSClient工具类 文件上传下载

    package cn.itcast.fastdfs.cliennt; import org.csource.common.NameValuePair; import org.csource.fastd ...

  7. 转-git 配置用户名和邮箱

    原址:http://www.cnblogs.com/fsong/p/5540840.html 在安装了git for windows之后,个人总是忘记配置git config的命令,以此记录一下: 配 ...

  8. hdoj3038(带权并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3038 题意:对于给定的a1..an,通过询问下标x..y,给出a[x]+...+a[y],但给出的值可 ...

  9. malloc、free、new、delete

    一.C语言中不定大小多维数组的处理: 如果要给二维数组(m*n)分配空间,代码可以写成下面: char **a, i; // 先分配m个指针单元,注意是指针单元 // 所以每个单元的大小是sizeof ...

  10. Javascript读写CSS属性

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...