PKUWC Slay The Spire
题面链接
sol
好神啊。果然\(dp\)还是做少了,纪录一下现在的思维吧\(QAQ\)。
我们首先可以发现期望是骗人的,要不然他乘的是什么xjb玩意。
其实就是要求所有方案的最优方案和。
因为\(w_i\)是大于1的,所以能强化先强化,再从大往小打攻击牌。
那么我们枚举用了\(a\)张强化,\(b\)张攻击。
若\(a<k\),显然强化牌选完,攻击牌从大到小。
否则,选前\(k-1\)大的强化牌,再选最大的攻击牌。
我们如何做到最优呢,这里有一个套路,先排序,这样可以保证每一种方案这一定是最优的。
设\(f[i][j]\)表示用了\(i\)张强化牌最后一张是第\(j\)张的所有的方案的乘积。
设\(g[i][j]\)表示用了\(i\)张攻击牌最后一张是第\(j\)张的所有的方案的和。
注意我们是求所有的方案。
设\(F[i][j]\)表示取了\(i\)张强化牌,用了\(j\)张的方案的乘积。
设\(G[i][j]\)表示取了\(i\)张攻击牌,用了\(j\)张的方案的和。
那么有
\]
\]
一张强化牌都不能要的时候。\(F[x][y]=\binom{n}{x}\)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define gt getchar()
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
inline int in()
{
int k=0;char ch=gt;
while(ch<'-')ch=gt;
while(ch>'-')k=k*10+ch-'0',ch=gt;
return k;
}
const int N=3005,YL=998244353;
inline int MO(const int &a){return a>=YL?a-YL:a;}
inline int ksm(int a,int k){int r=1;while(k){if(k&1)r=1ll*r*a%YL;a=1ll*a*a%YL,k>>=1;}return r;}
int f[N][N],g[N][N],a[N],b[N],sum[N],fac[N],fnv[N],n,m,k;
inline int C(int x,int y){return y>x?0:1ll*fac[x]*fnv[y]%YL*fnv[x-y]%YL;}
inline int qh(int x,int y)
{
if(y>x)return 0;if(!y)return C(n,x);
int res=0;
for(int i=1;i<=n;++i)
res=MO(res+1ll*f[y][i]*C(n-i,x-y)%YL);
return res;
}
inline int gj(int x,int y)
{
if(y>x)return 0;if(!y)return 0;
int res=0;
for(int i=1;i<=n;++i)
res=MO(res+1ll*g[y][i]*C(n-i,x-y)%YL);
return res;
}
int main()
{
fac[0]=fnv[0]=1;
for(int i=1;i<=3000;++i)fac[i]=1ll*fac[i-1]*i%YL;fnv[3000]=ksm(fac[3000],YL-2);
for(int i=3000;i>=1;--i)fnv[i-1]=1ll*fnv[i]*i%YL;
int t=in();
while(t--)
{
n=in(),m=in(),k=in();
for(int i=1;i<=n;++i)a[i]=in();
for(int i=1;i<=n;++i)b[i]=in();
std::sort(a+1,a+n+1,std::greater<int>());
std::sort(b+1,b+n+1,std::greater<int>());
for(int i=1;i<=n;++i)f[1][i]=a[i],sum[i]=MO(sum[i-1]+a[i]);
for(int i=2;i<=n;++i)
{
for(int j=1;j<=n;++j)f[i][j]=1ll*a[j]*sum[j-1]%YL;
for(int j=1;j<=n;++j)sum[j] =MO(sum[j-1]+f[i][j]);
}
for(int i=1;i<=n;++i)g[1][i]=b[i],sum[i]=MO(sum[i-1]+b[i]);
for(int i=2;i<=n;++i)
{
for(int j=1;j<=n;++j)g[i][j]=MO(1ll*b[j]*C(j-1,i-1)%YL+sum[j-1]);
for(int j=1;j<=n;++j)sum[j] =MO(sum[j-1]+g[i][j]);
}
int ans=0;
for(int a=0,t=std::min(n,m);a<=t;++a)
{
int b=m-a;if(b>n||b<0)continue;
ans=MO(ans+(a<k?1ll*qh(a,a)*gj(b,k-a)%YL:1ll*qh(a,k-1)*gj(b,1)%YL));
}
printf("%d\n",ans);
}
return 0;
}
PKUWC Slay The Spire的更多相关文章
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- BZOJ 5467 Slay the Spire
BZOJ 5467 Slay the Spire 我的概率基础也太差了.jpg 大概就是这样,因为强化牌至少翻倍,所以打出的牌必定是全部的强化牌或者$k-1$个强化牌,然后剩余的机会打出最大的几个攻击 ...
- loj #2538. 「PKUWC2018」Slay the Spire
$ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...
- loj2538 「PKUWC 2018」Slay the Spire
pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...
- [LOJ #2538][PKUWC 2018]Slay the Spire
题目大意:一开始有 $2n$ 张牌,每张牌上都写着一个数字 $w_i$,有两种的牌,每种类型各 $n$ 张: 1.攻击牌:打出后对对方造成牌上的数字的伤害. 2.强化牌:打出后,设数字为 $x$,则其 ...
- 【loj2538】 【PKUWC 2018】Slay the Spire dp
我们不难发现,假设抽了x张攻击牌,y张强化牌,那么肯定是打出尽可能多张的强化牌后,再开始出攻击牌(当然最少要一张攻击牌) 我们设G(i,j)表示:所有(抽到的攻击牌牌数为i,打出的攻击牌牌数为j)的方 ...
- BZOJ.5467.[PKUWC2018]Slay the Spire(DP)
LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用 ...
- [PKUWC2018] Slay the spire
Description 现在有 \(n\) 张强化牌和 \(n\) 张攻击牌: 攻击牌:打出后对对方造成等于牌上的数字的伤害. 强化牌:打出后,假设该强化牌上的数字为 \(x\),则其他剩下的攻击牌的 ...
- 题解-PKUWC2018 Slay the Spire
Problem loj2538 Solution 在考场上当然要学会写暴力,考虑如果手上已经有了\(a\)张攻击牌和\(b\)张强化牌: 首先强化牌会在攻击牌之前用(废话),其次要将两种牌分别从大往小 ...
随机推荐
- react.js插件开发,x-dailog弹窗浮层组件
react.js插件开发,x-dailog弹窗浮层组件 我认为,每一个组件都应该有他自带的样式和属性事件回调配置.所以我会给x-dialog默认一套简单的样式,和各种默认的配置项.所有react插件示 ...
- c语言数字图像处理(十):阈值处理
定义 全局阈值处理 假设某一副灰度图有如下的直方图,该图像由暗色背景下的较亮物体组成,从背景中提取这一物体时,将阈值T作为分割点,分割后的图像g(x, y)由下述公式给出,称为全局阈值处理 多阈值处理 ...
- 《杜增强讲Unity之Tanks坦克大战》6-发射子弹
6 发射子弹 本节完成发射子弹的功能,最终代码如下: image 首先,发射子弹得确定发射的位置和方向,还有发射的初始速度.具体的发射速度和按下发射按键的时间长短有关,这个关于子弹的蓄力我们在第九 ...
- Java生成唯一ID
这里我用的是Java提供的java.util.UUID类来产生随机字串,UUID码是什么我就不再赘述,能满足我们的需求就可以. 下面是java代码: import java.util.UUID; pu ...
- MySQL(MariaDB)基础之一:编译安装
一.cmake介绍 cmake的重要特性之一是其独立于源码的编译功能,即编译工作可以在另一个指定的目录中而非源码目录中进行,这可以保证源码目录不受任何一次编译影响,因此在同一个源码树上可以进行多次不同 ...
- js多条件if语句简写发生Uncaught SyntaxError: Unexpected token }
改写原生js 多条件if判断语句时,采用三元方法,发生Uncaught SyntaxError: Unexpected token } function compareImgSize() { var ...
- cal命令详解
基础命令学习目录首页 原文链接:https://www.yiibai.com/linux/cal.html cal命令可以用来显示公历(阳历)日历.公历是现在国际通用的历法,又称格列历,通称阳历.“阳 ...
- 使用SSD目标检测c++接口编译问题解决记录
本来SSD做测试的Python接口用起来也是比较方便的,但是如果部署集成的话,肯定要用c++环境,于是动手鼓捣了一下. 编译用的cmake,写的CMakeList.txt,期间碰到一些小问题,简单记录 ...
- Beta阶段中间产物【欢迎来怼】
一.版本控制 ①Git地址:https://git.coding.net/tianjiping/Android-tianjiping.git ②check in次数:7次. ③成员代码贡献 因为阚博文 ...
- 1001. A+B Format (20)题解
git链接 作业描述 Calculate a + b and output the sum in standard format -- that is, the digits must be sepa ...