Globally-Robust Neural Networks
概
本文是一种可验证的鲁棒方法, 并且提出了一种globally-robust的概念, 但是实际看下来并不觉得有特别出彩的地方.
主要内容
对于网络\(f : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\), 其中\(m\)表示共有m个不同的类别. 则prediction可以表示为
\]
普通的local robustness采用如下方式定义:
\(F\)被称为在点\(x\)满足\(\epsilon\)-locally-robust, 当对于任意的样本\(x'\)满足
\]
这种定义方式并不恰当, 因为倘若这个性质对于所有的点都成立, 那么所有的样本都会被判定为同一个类别, 从而得到的是一个退化的\(F\).
作者给出的globally-robust的定义是可以对于所有\(x\)有效的.
首先假设一个新的类别\(\perp\), 以及关系
\]
当且仅当
\]
则globally-robust是这么定义的:
\(F\)是\(\epsilon\)-globally-robust的, 如果对于任意的\(x_1, x_2\), 有下列推论成立
\]
换言之, \(F\)关于所有点的预测, 要么其是locally-robust, 要么是属于\(\perp\)的, 故可以将\(\perp\)理解为所有不满足locally-robust的点.
接下来作者给出了这样模型的构造方法:
假设
\]
即\(f_i\)的全局Lipschitz常数为\(K_i\).
令
\]
定义
\]
背后的直觉是, 根据Lipschitz常数的性质, 有
y_j -K_j \epsilon \le f_j (x') \le y_j + K_j \epsilon,
\]
所以
\]
所以\(y_{\perp}\)反映了最坏的情况, 如果\(y_{\perp} > y_j\), 便有可能存在\(x', \|x'-x\| \le \epsilon\), 但是\(F(x') \not= F(x)\).
当然了, 这个是一个非常宽泛的情况.
进一步定义:
\bar{f}_{\perp}^{\epsilon}(x) = y_{\perp},
\]
所以最后的模型是:
\]
并由如下的性质:
定理1: 如果\(\bar{F}^{\epsilon}(x) \not = \perp\), 则 \(\bar{F}^{\epsilon}(x) = F(x)\), 且\(\bar{F}^{\epsilon}\)在\(x\)处是\(\epsilon\)-locally-robust的.
这是显然的, 因为这说明在\(\epsilon\)的ball内, 找出比上面情况更坏的点.
定理2: \(\bar{F}^{\epsilon / 2}(x)\)是\(\epsilon\)-globally-robust的.
只需证明不可能存在\(x_1, x_2, \|x_1 - x_2\| \le \epsilon\), \(\bar{F}^{\epsilon/2}(x_1)=c_1\not= c_2 =\bar{F}^{\epsilon/2}(x_1)\),
根据上面的定理可知:
\]
任取
\]
注: 这里\(B\)是闭球.
则根据定理1有\(F(x_1) = F(x_3) = F(x_2)\), 矛盾.
所以, 我们这么构造的模型就符合作者的定义了, 但是还存在下面的问题:
- 全局Lipschitz常数的估计问题: 作者采用简单粗暴的逐层计算并相乘, 放得很宽;
- 如果Lipschitz常数过大, 这个模型并不会有效, 显然所有的样本都会被判断为\(\perp\), 作者最后采用的损失函数是TRADES的一个变种:
\[\mathcal{L}_T(x,y) = \mathcal{L}_{CE}(f(x), y) + \lambda \cdot \mathrm{D}_{KL}(\bar{f}^{\epsilon}(x)\| f(x)).
\]
代码
Globally-Robust Neural Networks的更多相关文章
- 【论文阅读】Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks
Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks 参考 1. 人脸关键点: 2. ...
- Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...
- [Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint
目录 概 主要内容 LSGD Box 初始化 Box for Resnet 代码 Cyr E C, Gulian M, Patel R G, et al. Robust Training and In ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- 【转】Artificial Neurons and Single-Layer Neural Networks
原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article of ...
- 提高神经网络的学习方式Improving the way neural networks learn
When a golf player is first learning to play golf, they usually spend most of their time developing ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 3.Programming assignments:Convolutional Model: application
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook ...
- Convolutional Neural Networks: Application
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- (转)Understanding, generalisation, and transfer learning in deep neural networks
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017 Thi ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
随机推荐
- 漏洞检测方法如何选?详解源代码与二进制SCA检测原理
摘要:本文探讨的是SCA具体的检测原理,源代码SCA检测和二进制SCA检测有哪些相同点和不同点,在进行安全审计.漏洞检测上各自又有什么样的优势和适用场景. 本文分享自华为云社区<源代码与二进制文 ...
- C/C++ Qt 数据库与TableView多组件联动
Qt 数据库组件与TableView组件实现联动,以下案例中实现了,当用户点击并选中TableView组件内的某一行时,我们通过该行中的name字段查询并将查询结果关联到ListView组件内,同时将 ...
- 文件和目录之间建立链接 (ln)
- 如何删除苹果电脑垃圾文件-7个高级技巧释放大量苹果Mac
硬盘空间用尽是一件很让人头疼的事情,尤其是MacBook Air等设备上的固态硬盘可用的储存空间很少.下面[微IT]为大家介绍7个高级技巧来释放大量的硬盘空间,当然这些高级技巧更改了系统功能和文件,必 ...
- @RequestBody配合@Valid 校验入参参数
自定义一个Controller import com.example.demo.pojo.User; import org.springframework.web.bind.annotation.Po ...
- PhoneGap本地将html打包成安卓App
PhoneGap的在线打包有大小限制,超过30M的包无法在线打包.当然,可以把包里面的图片.声音文件去掉,然后打包.下载以后,解包,重新打包并签名.蛮麻烦的. 本地打包的简单方法如下: 下载安装Jav ...
- 使用buffered流结合byte数组,读入文件中的内容,包括中文字符
package com.itcast.demo05.Buffered;import java.io.BufferedInputStream;import java.io.FileInputStream ...
- Windows下搭建FFmpeg开发调试环境
背景 如果你是一个FFmpeg的使用者,那么绝大部分情况下只需要在你的程序中引用FFmpeg的libav*相关的头文件,然后在编译阶段链接相关的库即可. 但是如果你想调试FFmpeg内部相关的逻辑,或 ...
- ANTLR 简介
<ANTLR 4权威指南>由机械工业出版社出版,有兴趣的读者推荐购买阅读. 本专题大多内容来源于我读<ANTLR 4权威指南>的随手笔记以及个人实践,仅供参考学习,请勿用于任何 ...
- 玩转 Mockjs,前端也能跑的很溜
mockjs作用就是,生成随机模拟数据,拦截 ajax 请求,可以对数据进行增删改查.在生成数据时,我们就需要能够熟练使用 mock.js 的语法. Mockjs 的语法规范包括两部分:数据模板定 ...