[cf461E]Appleman and a Game
考虑我的每一次添加操作,要满足:1.该串是t的子串;2.该串不能与下一次的串开头字母构成t的子串。那么,设f[i][j][k]表示拼i次,第i次填入的开头字母是j,第i+1填入的开头字母是k的最短长度。
状态转移方程:f[i][j][k]=min(f[i-1][j][t]+f[1][t][k]),这个东西可以用矩阵乘法来搞(把加改成min即可)。
这样求出的最后一个存在j和k满足f[i][j][k]<n的i即为答案,因为f[i][j][k]的值一定随i的增长而增长,因此可以二分i并判断是否存在。
之后还要预处理出f[1][i][j],这个东西暴力枚举显然是$o(n^{2})$的,但是发现判断f[1][i][j]不合法当且仅当所有以i为开头以j为结尾且长度为f[1][i][j]的串都是t的子串,而t中长度固定的串不超过|t|个,而这样的串有$4^{f[1][i][j]}$个,如果满足$4^{f[1][i][j]}>|t|$则f[1][i][j]一定不合法,大约有$f[1][i][j]\leq 20$。
接下来计算就很简单来,可以对s中所有长度小于等于20的子串建一棵trie树并统计一下就可以。


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 struct ji{
5 ll a[5][5];
6 }a,b,c;
7 ll n,k;
8 int V,tr[2000005][5],f[5][5][100005];
9 char s[100005];
10 void ins(int k){
11 for(int i=k,j=1;(i<k+20)&&(s[i]);j=tr[j][s[i++]-'A'])
12 if (!tr[j][s[i]-'A']){
13 tr[j][s[i]-'A']=++V;
14 f[s[k]-'A'][s[i]-'A'][i-k]++;
15 }
16 }
17 ji cheng(ji a,ji b){
18 for(int i=0;i<4;i++)
19 for(int j=0;j<4;j++)c.a[i][j]=n+1;
20 for(int i=0;i<4;i++)
21 for(int j=0;j<4;j++)
22 for(int k=0;k<4;k++)
23 c.a[i][k]=min(c.a[i][k],a.a[i][j]+b.a[j][k]);
24 return c;
25 }
26 void ksm(ji a,ll n){
27 while (n){
28 if (n&1)b=cheng(b,a);
29 a=cheng(a,a);
30 n/=2;
31 }
32 }
33 bool pd(ji a){
34 for(int i=0;i<4;i++)
35 for(int j=0;j<4;j++)
36 if (a.a[i][j]<n)return 1;
37 return 0;
38 }
39 int main(){
40 scanf("%lld%s",&n,s);
41 V=1;
42 for(int i=0;s[i];i++)ins(i);
43 for(int i=0;i<4;i++)
44 for(int j=0;j<4;j++){
45 for(int k=1;f[i][j][k]==(1<<(2*k-2));k++)a.a[i][j]=k;
46 a.a[i][j]++;
47 }
48 k=n;
49 for(ll i=0;i<k;){
50 memset(b.a,0,sizeof(b.a));
51 ll j=(i+k+1>>1);
52 ksm(a,j);
53 if (pd(b))i=j;
54 else k=j-1;
55 }
56 printf("%lld",k+1);
57 }
[cf461E]Appleman and a Game的更多相关文章
- 【CF461E】Appleman and a Game 倍增floyd
[CF461E]Appleman and a Game 题意:你有一个字符串t(由A,B,C,D组成),你还需要构造一个长度为n的字符串s.你的对手需要用t的子串来拼出s,具体来说就是每次找一个t的子 ...
- CodeForces462 A. Appleman and Easy Task
A. Appleman and Easy Task time limit per test 1 second memory limit per test 256 megabytes input sta ...
- Codeforces 461B. Appleman and Tree[树形DP 方案数]
B. Appleman and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- CF461B Appleman and Tree (树DP)
CF462D Codeforces Round #263 (Div. 2) D Codeforces Round #263 (Div. 1) B B. Appleman and Tree time l ...
- CF 461B Appleman and Tree 树形DP
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...
- Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)
题目链接 D. Appleman and Tree time limit per test :2 seconds memory limit per test: 256 megabytes input ...
- Codeforces Round #263 (Div. 1) C. Appleman and a Sheet of Paper 树状数组暴力更新
C. Appleman and a Sheet of Paper Appleman has a very big sheet of paper. This sheet has a form of ...
- CodeForces 462B Appleman and Card Game(贪心)
题目链接:http://codeforces.com/problemset/problem/462/B Appleman has n cards. Each card has an uppercase ...
- Codeforces 461B Appleman and Tree(木dp)
题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...
随机推荐
- MyCat的快速搭建
1. 概述 老话说的好:一个好汉三个帮,一个人再聪明.再有本事,也要借助他人的力量,才能成功. 言归正传,今天我们来聊聊 MyCat的快速搭建. 2. 场景介绍 服务器A IP:192.168.1.2 ...
- 题解「雅礼集训 2017 Day7」事情的相似度
题目传送门 Description 给出一个长度为 \(n\) 的 \(01\) 串为 \(s\),设 \(t_i\) 为 \(s_{1,2,..,i}\),有 \(m\) 次查询,每次查询给出 \( ...
- web全栈后台权限管理系统(VUE+ElementUi+nodeJs+koa2)
web全栈后台权限管理系统(VUE+ElementUi+nodeJs+koa2) 主要技术 前端 vue 全家桶 ElementUI 后端 Node.js Koa2 Mongoess 数据库 mong ...
- C/C++入门级小游戏——开发备忘录
很多工科的学生在大一都有一门课程,叫C语言程序设计.大概就是装个IDE然后和一个黑乎乎的窗口打交道,期末到了考完试就结束了.然而很多人可能都有一个疑惑:C语言究竟能干什么?除开嵌入式单片机这些高大上的 ...
- g++ 常用命令
g++ --help
- 搭载Dubbo+Zookeeper踩了这么多坑,我终于决定写下这篇!
大家好,我是melo,一名大二上软件工程在读生,经历了一年的摸滚,现在已经在工作室里边准备开发后台项目啦. 这篇文章我们不谈数据结构了,来谈谈入门分布式踩过的坑.感觉到了分布式这一层,由于技术更新迭代 ...
- JavaScript04
分离绑定事件 使用分离方式绑定元素事件可以使用页面元素与JavaScript代码完全分离,有利于代码分工和维护,是目前开发主流,分为两步: 1.获取需要绑定事件的元素 语法:根据id属性值取元素节点 ...
- MAC 安装 apache ab 压力测试工具以及遇到的坑
ab 是apache对 http服务器进行压力测试的工具,它可以测试出服务器每秒可以处理多少请求.本文记录mac版本安装 ab 的步骤以及遇到的坑. 下载 进入 apache ab官网 下载页面. 安 ...
- OO前三次作业思考(第一次OO——Blog)
OO前三次作业总结 基于度量分析程序结构 由于三次作业较多,决定分析内容.功能最为复杂的第三次作业. 上图为第三次作业的类图.我使用了一个抽象类Factor,写了五个因子继承Factor,然后又单独开 ...
- 网络原理数据链路层之差错控制(检错编码和纠错编码)->(奇偶校验码、CRC循环冗余码、海明码)
文章转自:https://blog.csdn.net/weixin_43914604/article/details/104864783 学习课程:<2019王道考研计算机网络> 学习目的 ...