Deep Belief Network
Deep Belief Network
3实例
3.1 测试数据
按照上例数据,或者新建图片识别数据。
3.2 DBN实例
//****************例2(读取固定样本:来源于经典优化算法测试函数Sphere Model)***********//
//2 读取样本数据
Logger.getRootLogger.setLevel(Level.WARN)
valdata_path ="/user/huangmeiling/deeplearn/data1"
valexamples =www.ycyc66.cn/ sc.textFile(data_path).cache()
valtrain_d1 =www.zhenlyule.cn examples.map { line =>
valf1 = line.split("\t")
valf =f1.map(f =>www.egouyuLe.cn f.toDouble)
valid =f(0)
valy = Array(f(1))
valx =f.slice(2,f.length)
(id, new BDM(1,y.length,y),new BDM(1,x.length,x))
}
valtrain_d =train_d1.www.zhenloyl88.cn map(f => (f._2, f._3))
valopts = Array(100.0,20.0,0.0)
//3 设置训练参数,建立DBN模型
valDBNmodel =new DBN().
setSize(Array(5, 7)).
setLayer(2).
setMomentum(0.1).
setAlpha(1.0).
DBNtrain(train_d, opts)
//4 DBN模型转化为NN模型
valmynn =DBNmodel.www.yghrcp88.cn dbnunfoldtonn(1)
valnnopts = Array(100.0,50.0,0.0)
valnumExamples =train_d.count()
println(s"numExamples =www.huacairen88.cn $numExamples.")
println(mynn._2)
for (i <-0 tomynn._1.length -1) {
print(mynn._1(i) +"\t")
}
println()
println("mynn_W1")
valtmpw1 =mynn._3(0)
for (i <-0 totmpw1www.jyz521.com/ .rows -1) {
for (j <-0 totmpw1.cols -1) {
print(tmpw1(i,j) +"\t")
}
println()
}
valNNmodel =new www.ludingyule66.cn NeuralNet().
setSize(mynn._1).
setLayer(mynn._2).
setActivation_function("sigm").
setOutput_function("sigm").
setInitW(mynn._3).
NNtrain(train_d, nnopts)
//5 NN模型测试
valNNforecast =NNmodel.www.yyzx66.cn/ predict(train_d)
valNNerror =NNmodel.Loss(NNforecast)
println(s"NNerror = $NNerror.")
valprintf1 =NNforecast.map(f => (www.myqunliphoto.com/ f.label.data(0), f.predict_label.data(0))).take(200)
println("预测结果——实际值:预测值:误差")
for (i <-0 untilprintf1.length)
println(printf1(i)._1 +"\t" +printf1(i)._2 +"\t" + (printf1(i)._2 -printf1(i)._1))
Deep Belief Network的更多相关文章
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- Deep Belief Network简介
Deep Belief Network简介 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: 理论上来说, 隐藏层越多, 模型的表达能力应该越强.但是, 当 ...
- Deep Belief Network简介——本质上是在做逐层无监督学习,每次学习一层网络结构再逐步加深网络
from:http://www.cnblogs.com/kemaswill/p/3266026.html 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...
- Deep Learning 17:DBN的学习_读论文“A fast learning algorithm for deep belief nets”的总结
1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 ...
- 转【面向代码】学习 Deep Learning(二)Deep Belief Nets(DBNs)
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447 ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
随机推荐
- MongoDB:The Definitive Guide CHAPTER 1 Introduction
MongoDB is a powerful, flexible, and scalable data store. It combines the ability to scale out with ...
- Android开发——新特性与知识点回顾
Fragment 用途:在一个Activity里切换界面,切换界面时只切换Fragment里面的内容 生命周期方法跟Activity一致,可以理解把其为就是一个Activity 定义布局文件作为Fra ...
- How to easily concatenate text based on criteria in Excel? 如何将Excel中的文本按条件合并
To combine text with the unique ID numbers, you can extract the unique values first and then create ...
- [Oracle] - 性能优化工具(5) - AWRSQL
在AWR中定位到问题SQL语句后想要了解该SQL statement的详细运行计划,于是就用AWR报告中得到的SQL ID去V$SQL等几个动态性能视图中查询,但发现V$SQL或V$SQL_PLAN视 ...
- ngnix apache tomcat集群负载均衡配置
http://w.gdu.me/wiki/Java/tomcat_cluster.html 参考: Tomcat与Apache或Nginx的集群负载均衡设置: http://huangrs.blog. ...
- [TypeScript ] What Happens to Compiled Interfaces
This lesson covers using your first TypeScript Interface and what happens to the Interface when it i ...
- GDB-Dashboard-GDB可视化界面
项目地址 https://github.com/cyrus-and/gdb-dashboard 项目介绍 gdb-dashboard是一个gdb的可视化界面,可以通过web或者终端来现实可视化信息,支 ...
- careercup-数组和字符串1.3
1.3 给定两个字符串,请编写程序,确定其中一个字符串的字符重新排序后,能否变成另一个字符串. C++实现代码: #include<iostream> #include<map> ...
- iOS UIKit:CollectionView之布局(2)
Collection view使用UICollectionViewFlowLayout对象来管理section中的cell,该对象是一种流布局方式,即在collection view中的section ...
- IIS Shared Configuration
Introduction The Internet changes the ways in which companies handle their day-to-day business and h ...