bzoj1257
这道题初看确实没什么思路,感觉之前的数论知识都用不上,只好自己找规律
首先当n>=k 这部分是很容易直接算出的
下面我们先来尝试这穷举i,
不难发现当穷举i时,总存在一段连续的除数,k div i=p定值
设这段是i~j,则这部分的的余数和signma(k-p*q) (i<=q<=j) 即为k*(j-i+1)-p*(i+j)*(j-i+1)/2
由于随着i的增大,k div i逐渐变小,是接近单调的
因此这样一段连续的除数我们可以通过二分确定其范围
这样就可以AC了
var ans:int64;
n,k,i,j,p:longint; function find(l,r:longint):longint;
var m,w:longint;
begin
w:=l;
while l<=r do
begin
m:=(l+r) shr ;
if (k div m=p) then
begin
w:=m;
l:=m+;
end
else r:=m-;
end;
exit(w);
end; begin
readln(n,k);
if n>k then
begin
ans:=ans+int64(n-k)*int64(k);
n:=k-;
end;
if n=k then dec(n);
i:=;
while i<=n do
begin
p:=k div i;
j:=find(i,n);
ans:=ans-int64(j-i+)*int64(i+j)*int64(p) div ;
i:=j+;
end;
ans:=ans+int64(n)*int64(k);
writeln(ans);
end.
bzoj1257的更多相关文章
- 【BZOJ1257】余数之和(数论分块,暴力)
[BZOJ1257]余数之和(数论分块,暴力) 题解 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的 ...
- BZOJ1257 CQOI2007 余数之和 【数分块】
BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...
- 【bzoj1257】[CQOI2007]余数之和sum
[bzoj1257][CQOI2007]余数之和sum 2014年9月1日1,9161 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod ...
- BZOJ1257 [CQOI2007]余数之和sum
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 【BZOJ1257】【CQOI2007】余数之和sum
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, ...
- 约数 求反素数bzoj1053 bzoj1257
//约数 /* 求n的正约数集合:试除法 复杂度:O(sqrt(n)) 原理:扫描[1,sqrt(N)],尝试d能否整除n,若能,则N/d也能 */ ],m=; ;i*i<=n;i++){ ){ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum
http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...
- [BZOJ1257][CQOI2007]余数之和
题目大意 给你 \(n, k\),计算 $ \sum_{i=1}^n k \bmod i$ 解析 注意到 $ k\bmod i=k-[k/i] \times i$ 则上式等于 $ n \times k ...
随机推荐
- FreeBSD系统更新与软件安装方法
一.系统更新 freebsd-update fetch freebsd-update install 二.软件源更新(类似yum update.apt-get update) 1.取回源 portsn ...
- 在iis中mantisbt配置过程
最近需要安装个mantisbt,由于不想再安装个apache服务器,因此直接使用iis作为php解析服务器.同时为了方便管理安装包,将php安装包和扩展包能够独立存放在D:\Program Files ...
- 使用SBT构建Scala项目
既然决定要在Scala上下功夫,那就要下的彻底.我们入乡随俗,学一下SBT.sbt使用ivy作为库管理工具.ivy默认把library repository建在user home下面. 安装SBT 在 ...
- JavaScript的DOM操作(二)
一:window.history对象 历史记录,通过历史记录可以操作页面前进或者后退 window.history.back();后退 window.history.forward();前进 wind ...
- 洛谷 P1731 生日蛋糕
/*洛谷 1731 生日蛋糕 傻傻的-1 T成了傻逼*/ #include<cstdio> #include<iostream> #include<cmath> # ...
- 认识javascript作用域
JavaScript的作用域链 这是一个非常重要的知识点了,了解了JavaScript的作用域链的话,能帮助我们理解很多‘异常’问题. 下面我们来看一个小例子,前面我说过的声明提前的例子. var n ...
- C++ 常见问题
1:保证编译后方法名不被修改: The: extern "C" { function declarations here in h file } will disable C++ ...
- 网页Gzip
网页Gzip压缩检测工具 网站Gzip压缩可以减小服务器带宽占用,提高用户打开网页速度,最多可以提升网站80%的性能,是每个网站必须开启的功能, 站长工具网页 Gzip压缩检测工具方便站长朋友们检测特 ...
- hadoop_并行写操作思路_2
如果想实现将 Client端的 File并行写入到 各个Datanode中, 首先, 应该修改的是,DistributedFileSystem中的create方法, 在create 内部调用FSNam ...
- mac管理员密码破解
方法一:官方解决方法.找出电脑原配的系统盘,找不到就借一张或者刻录一张,重启电脑,启动的时候按C键,选好语言后进入安装的时候,点击“常用工具”,里面有一项是“重设密码”,这时就可以重新设定Mac OS ...