POJ 3592--Instantaneous Transference【SCC缩点新建图 && SPFA求最长路 && 经典】
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 6177 | Accepted: 1383 |
Description
It was long ago when we played the game Red Alert. There is a magic function for the game objects which is called instantaneous transfer. When an object uses this magic function, it will be transferred to the specified point immediately, regardless of how
far it is.
Now there is a mining area, and you are driving an ore-miner truck. Your mission is to take the maximum ores in the field.
The ore area is a rectangle region which is composed by n × m small squares, some of the squares have numbers of ores, while some do not. The ores can't be regenerated after taken.
The starting position of the ore-miner truck is the northwest corner of the field. It must move to the eastern or southern adjacent square, while it can not move to the northern or western adjacent square. And some squares have magic power that can instantaneously
transfer the truck to a certain square specified. However, as the captain of the ore-miner truck, you can decide whether to use this magic power or to stay still. One magic power square will never lose its magic power; you can use the magic power whenever
you get there.
Input
The first line of the input is an integer T which indicates the number of test cases.
For each of the test case, the first will be two integers N, M (2 ≤ N, M ≤ 40).
The next N lines will describe the map of the mine field. Each of the N lines will be a string that contains M characters. Each character will be an integer X (0 ≤ X ≤ 9) or a '*' or a '#'. The integer X indicates
that square has X units of ores, which your truck could get them all. The '*' indicates this square has a magic power which can transfer truck within an instant. The '#' indicates this square is full of rock and the truck can't move on this square.
You can assume that the starting position of the truck will never be a '#' square.
As the map indicates, there are K '*' on the map. Then there follows K lines after the map. The next K lines describe the specified target coordinates for the squares with '*', in the order from north to south then west to east.
(the original point is the northwest corner, the coordinate is formatted as north-south, west-east, all from 0 to N - 1,M - 1).
Output
For each test case output the maximum units of ores you can take.
Sample Input
1
2 2
11
1*
0 0
Sample Output
3
题目大意:
有一个N*M的矩阵地图,矩阵中用了多种字符代表不同的地形。假设是数字X(0~9),则表示该区域为矿区,有X单位的矿产。
假设是"*",则表示该区域为传送点,而且相应唯一一个目标坐标。假设是"#",,则表示该区域为山区,矿车不能进入。如今矿车的出发点在坐标(0。0)点。而且(0,0)点一定不是"#"区域。矿车仅仅能向右走、向下走或是遇到传送点的时候能够传送到指定位置。那么问题来了:矿车最多能採到多少矿。
思路:
假设把N*M个矩阵单位看做是N*M个点。编号为0~N*M。然后从一个坐标到还有一个坐标看做是两点之间的边。
到达的坐标所拥有的矿产为边的权值。那么问题就变成了:矿车从节点0出发,所能达到的最长路径。可是除了向右走和向下走的边,考虑到还有传送点和目标坐标构成的边。原图上就会多了非常多回退边。构成了非常多的有向环。
有向环的出现,使得矿车可以採到的矿产增多了一部分,仅仅要能走到有向环内,则该环内全部点的矿产都能被採到。可是问题也出来了,假设不做处理,直接搜索路径。那么矿车非常可能会走进环内不出来。
于是想到了缩点。把有向环缩为一个点。也就是强连通分量缩点。并记录强连通分量中的总矿产值。
缩点后,原图就变成了一个有向无环图(DAG)。然后又一次建立一个新图(DAG),对新图求最长路径(用SPFA算法),得到源点(0。0)到各点的最长路径。
从中找出最长的路径,就是所求的结果。
这题和POJ3126类似,都是缩点SPFA求最长路。POJ312解析
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <queue>
#define maxn 2000+100
#define maxm 40000+100
#define INF 0x3f3f3f3f
using namespace std;
int n, m; struct node {
int u, v, next;
}; node edge[maxm];
int head[maxn], cnt;
int low[maxn], dfn[maxn];
int dfs_clock;
int Stack[maxn], top;
bool Instack[maxn];
int Belong[maxn];
int scc_clock;
int val[maxn];//存每一个点的矿石量
int sumval[maxn];//存每一个缩点的矿石量
vector<int>Map[maxm];
char map[100][100]; void init(){
cnt = 0;
memset(head, -1, sizeof(head));
memset(val, 0, sizeof(val));
memset(sumval, 0, sizeof(sumval));
memset(val, 0, sizeof(val));
} void addedge(int u, int v){
edge[cnt] = {u, v, head[u]};
head[u] = cnt++;
} void getmap(){
scanf("%d%d", &n, &m);
for(int i = 0; i < n; ++i)
scanf("%s", map[i]);
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
if(map[i][j] == '#') continue; if(i + 1 < n && map[i + 1][j] != '#')//向下走
addedge(i * m + j, (i + 1) * m + j);
if(j + 1 < m && map[i][j + 1] != '#')//向右走
addedge(i * m + j, i * m + j + 1);
val[i * m + j] = map[i][j] - '0'; if(map[i][j] == '*'){
val[i * m + j] = 0;
int x, y;
scanf("%d%d", &x, &y);
if(map[x][y] != '#');//传送的位置可能为 #
addedge(i * m + j, x * m + y);
}
}
}
} void Tarjan(int u){
int v;
low[u] = dfn[u] = ++dfs_clock;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next){
int v = edge[i].v;
if(!dfn[v]){
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(dfn[u] == low[u]){
scc_clock++;
do{
v = Stack[--top];
sumval[scc_clock] += val[v];
Instack[v] = false;
Belong[v] = scc_clock;
}
while( v != u);
}
} void find(){
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(Belong, 0, sizeof(Belong));
memset(Stack, 0, sizeof(Stack));
memset(Instack, false, sizeof(false));
dfs_clock = scc_clock = top = 0;
for(int i = 0; i < n * m; ++i){
if(!dfn[i])
Tarjan(i);
}
} void suodian(){//缩点新建图
for(int i = 1; i <= scc_clock; ++i)
Map[i].clear();
// for(int i = 0; i < n * m; ++i){
// for(int j = head[i]; j != -1; j = edge[j].next){
// int u = Belong[i];
// int v = Belong[edge[j].v];
// if(u != v)
// Map[u].push_back(v);
// }
// }
//上面也是一种建图方式。
for(int i = 0; i < cnt; ++i){
int u = Belong[edge[i].u];
int v = Belong[edge[i].v];
if(u != v)
Map[u].push_back(v);
}
} int vis[maxn],dist[maxn]; void SPFA(){
queue<int>q;
memset(vis, 0, sizeof(vis));
memset(dist, 0, sizeof(dist));
vis[Belong[0]] = 1;
dist[Belong[0]] = sumval[Belong[0]];
q.push(Belong[0]);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = 0;
for(int i = 0; i < Map[u].size(); ++i){
int v = Map[u][i];
if(dist[v] < dist[u] + sumval[v]){
dist[v] = dist[u] + sumval[v];
if(!vis[v]){
vis[v] = 1;
q.push(v);
}
}
}
}
} int main (){
int T;
scanf("%d", &T);
while(T--){
init();
getmap();
find();
suodian();
SPFA();
sort(dist + 1, dist + scc_clock + 1);
printf("%d\n", dist[scc_clock]);
}
return 0;
}
POJ 3592--Instantaneous Transference【SCC缩点新建图 && SPFA求最长路 && 经典】的更多相关文章
- poj 3592 Instantaneous Transference 【SCC +缩点 + SPFA】
Instantaneous Transference Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 6204 Accep ...
- POJ 3592 Instantaneous Transference(强连通+DP)
POJ 3592 Instantaneous Transference 题目链接 题意:一个图.能往右和下走,然后有*能够传送到一个位置.'#'不能走.走过一个点能够获得该点上面的数字值,问最大能获得 ...
- POJ 3592 Instantaneous Transference(强联通分量 Tarjan)
http://poj.org/problem?id=3592 题意 :给你一个n*m的矩阵,每个位置上都有一个字符,如果是数字代表这个地方有该数量的金矿,如果是*代表这个地方有传送带并且没有金矿,可以 ...
- 洛谷 P3627 [APIO2009]抢掠计划 Tarjan缩点+Spfa求最长路
题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来. ...
- poj 3592 Instantaneous Transference 缩点+最长路
题目链接 给一个n*m的图, 从0, 0这个点开始走,只能向右和向下. 图中有的格子有值, 求能获得的最大值. 其中有些格子可以传送到另外的格子, 有些格子不可以走. 将图中的每一个格子都看成一个点, ...
- POJ 3126 --Father Christmas flymouse【scc缩点构图 && SPFA求最长路】
Father Christmas flymouse Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 3007 Accep ...
- poj 3592 Instantaneous Transference
http://poj.org/problem?id=3592 #include <cstdio> #include <cstring> #include <algorit ...
- POJ 2762--Going from u to v or from v to u?【scc缩点新建图 && 推断是否是弱连通图】
Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15755 ...
- poj3592 Instantaneous Transference tarjan缩点+建图
//给一个n*m的地图.坦克从(0 , 0)開始走 //#表示墙不能走,*表示传送门能够传送到指定地方,能够选择也能够选择不传送 //数字表示该格的矿石数, //坦克从(0,0)開始走.仅仅能往右和往 ...
随机推荐
- php实现简单算法1
php实现简单算法1 <? //-------------------- // 基本数据结构算法 //-------------------- //二分查找(数组里查找某个元素) functio ...
- 相比于HTML4,HTML5废弃的元素有哪些?
第一类:表现性元素basefontbigcenterfontsstrikettu建议用语义正确的元素代替他们,并使用CSS来确保渲染后的效果 第二类:框架类元素因框架有很多可用性及可访问性问题,HTM ...
- stylus中文版参考文档之综述
http://www.zhangxinxu.com/jq/stylus/
- ping 原理及ICMP协议简介
//Ping IP/域名 public static String pingIPCennect(String ipStr) { String result = ""; if ( ...
- Gonet2 游戏server框架解析之Agent(3)
客户端消息在Agent中的预处理流程. Agent定义好的三种请求: //api.go var RCode = map[int16]string{ 0: "heart_beat_req&qu ...
- 百度地图ios环境配置
1 前言 由于工作需要,要开始捣腾百度地图了,今天上午初始牛刀,各种碰壁,无奈之下,中午睡了一觉,养精蓄锐,以备下午大战三百回合,所幸下午中午把百度地图Demo捣腾出来了,在此与大家分享,环境搭建教程 ...
- POJ 1006 Biorhythms (数论-中国剩余定理)
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 111285 Accepted: 34638 Des ...
- NYOJ 203 三国志(Dijkstra+贪心)
三国志 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描写叙述 <三国志>是一款非常经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.如今他把游戏简化一下 ...
- python-excel操作之xlrd
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++操作excel文件+++++++++++++++++ ...
- android 图片特效处理之图片叠加
这篇将讲到图片特效处理的图片叠加效果.跟前面一样是对像素点进行处理,可参照前面的android图像处理系列之七--图片涂鸦,水印-图片叠加和android图像处理系列之六--给图片添加边框(下)-图片 ...