题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004

今天讲课讲到的题,据说满足拟阵的性质,所以贪心是正确的;

总之就贪心,按价格从小到大排序,不能被表出就买上,计入答案,然后去消别的;

看博客说要用 long  double,今天才第一次知道 long double 读入时是 %Lf 啊。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define eps 1e-6
using namespace std;
int const maxn=;
typedef long double ld;
int n,m,cnt,ans;
struct N{ld a[maxn]; int w;}t[maxn],p[maxn];
bool vis[maxn];
bool cmp(N x,N y){return x.w<y.w;}
void solve()
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
if(fabs(t[i].a[j])<eps)continue;
if(!vis[j])
{
vis[j]=;
p[j]=t[i];//j位置的装备
cnt++;
ans+=t[i].w;
break;
}
else//被消元
{
ld k=t[i].a[j]/p[j].a[j];
for(int l=;l<=m;l++)
t[i].a[l]-=k*p[j].a[l];
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%Lf",&t[i].a[j]);//%Lf!!
for(int i=;i<=n;i++)scanf("%d",&t[i].w);
sort(t+,t+n+,cmp);
solve();
printf("%d %d",cnt,ans);
return ;
}

bzoj4004 [JLOI2015]装备购买——线性基+贪心的更多相关文章

  1. BZOJ 4004 [JLOI2015]装备购买 | 线性基

    题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...

  2. BZOJ 4004 [JLOI2015]装备购买 ——线性基

    [题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...

  3. BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]

    一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...

  4. 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)

    bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...

  5. BZOJ4004: [JLOI2015]装备购买

    总之就是线性基那一套贪心理论直接做就好了. 然而加强数据后很卡精度的样子. 于是重点在于这个特技:在整数模意义下搞. #include<cstdio> #include<algori ...

  6. [BZOJ4004][JLOI2015]装备购买(贪心+线性基)

    求最小权极大线性无关组. 先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优. 据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于 ...

  7. bzoj 4004 [JLOI2015]装备购买——拟阵证明贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 看Zinn博客水过去…… 运用拟阵可以证明按价格从小到大买的贪心是正确的.但自己还不会 ...

  8. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

  9. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

随机推荐

  1. Less——less基本安装

    1.下载node.js 我们需要NodeJ运行LESS示例. 要下载NodeJ,请打开链接https://nodejs.org/en/ 2.node.js安装是否正确 在cmd中输入lessc -v, ...

  2. html5——多列布局

    基本概念 1.多列布局类似报纸或杂志中的排版方式,上要用以控制大篇幅文本. 2.跨列属性可以控制横跨列的数量 /*列数*/ -webkit-column-count: ; /*分割线*/ -webki ...

  3. JS——void(0)

    a标签中阻止跳转: <a href="javascript:;">跳转</a> <a href="javascript:void(0)&qu ...

  4. dotnetnuke 7.x登录时不跳到站点设置中的指定页

    查源码发现登录按钮有参数,点击跳到登录页或者弹窗登录,真正登录后会根据传参的url反回.因为皮肤对像没有相应参数,所以只能去掉参数.我是用js去的,偷个懒吧.如下所示: <script type ...

  5. 详解HashMap数据结构实现

    HashMap的设计是由数组加链表的符合数据结构,在这里用自己的语言以及结合源码去总结一下,如果有不对的地方希望评论指正,先拱手谢谢. HashMap是日常中非常常用的一种数据结构,我们要想深入了解学 ...

  6. C# 处理URL地址

    calendarset.do?start=1548518400&end=1552147200&_=1546421856958calendarset.do?start=155093760 ...

  7. Linux学习笔记之 Btrfs文件系统简介及使用

    Btrfs 也有一个重要的缺点,当 BTree 中某个节点出现错误时,文件系统将失去该节点之下的所有的文件信息.而 ext2/3 却避免了这种被称为”错误扩散”的问题. Btrfs相关介绍: Btrf ...

  8. 关于Spring的69个问题

    Spring 概述 1. 什么是spring? Spring 是个java企业级应用的开源开发框架.Spring主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Spring ...

  9. java web 基本属性

    page指令 属性 描述 默认值 language 指定JSP页面使用的脚本语言 java import contenType include指令 taglib注释 <!--我是html注释-- ...

  10. 搭建 Seafile 专属网盘

    准备域名 任务时间:15min ~ 20min 域名注册 如果您还没有域名,可以在腾讯云上选购,过程可以参考下面的视频. 视频 - 在腾讯云上购买域名 域名解析 域名购买完成后, 需要将域名解析到实验 ...