题目描述

对于一些长度为n的排列,将其作为一个置换,那么可能有一个自置换的次数使其回到1,2,3,...,n的情况。求对于所有能够回到1,2,3..,n的排列,不同的次数共有多少种。

题解来自黄学长

这道题可以转换一下。

试想每一个对应关系a-b为从a->b的一条边,

那么图中一定存在n条边且每个点入度出度都为1,

易证一定存在一个或几个环。

实际上排数就是这几个环大小的最小公倍数。

即求和为n的数列的最小公倍数种数。

那么可以直接DP

#include<algorithm>
#include<cstdio>
#include<cstdio>
using namespace std;
int n,tot;
int pri[];
long long ans,f[][];
bool vis[];
void getpri(){
for(int i=;i<=;i++){
if(!vis[i])pri[++tot]=i;
for(int j=;j<=tot&&pri[j]*i<=;j++){
vis[pri[j]*i]=;
if(i%pri[j]==)break;
}
}
}
int main(){
scanf("%d",&n);
getpri();
f[][]=;
for(int i=;i<=tot;i++){
for(int j=;j<=n;j++)f[i][j]=f[i-][j];
for(int j=pri[i];j<=n;j*=pri[i])
for(int k=;k<=n-j;k++)
f[i][k+j]+=f[i-][k];
}
for(int i=;i<=n;i++)ans+=f[tot][i];
printf("%lld",ans);
}

bzoj1025 [SCOI2009]游戏 动态规划的更多相关文章

  1. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  2. [BZOJ1025] [SCOI2009]游戏 解题报告

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  3. BZOJ1025: [SCOI2009]游戏

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  4. [bzoj1025][SCOI2009]游戏 (分组背包)

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一 且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们 ...

  5. BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】

    题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...

  6. bzoj1025: [SCOI2009] 游戏 6

    DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...

  7. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  8. 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)

    传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...

  9. bzoj1025(SCOI2009)游戏——唯一分解的思路与应用

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 可以认为对应的值之间连边,就连成了一个有一个或几个环的图.列数就是每个环里点数的lcm ...

随机推荐

  1. mount ntfs 失败解决办法

    在双系统中,ntfs可能会应为windows的缓存而挂载失败.可用下面命令修复. Use ntfsfix in the terminal, even if you can't access Windo ...

  2. POJ 1952 DP

    思路: 这题要求最长下降子序列的长度和个数,我们可以增加 数组maxlen[size](记录当前第1个点到第i个点之间的最长下降序列长度) 和maxnum[size](记录1~i之间的最长下降序列个数 ...

  3. windows快速找到host文件

    https://jingyan.baidu.com/article/1e5468f96f7345484961b71e.html

  4. XML学习(一)——xml内容简介

    一.什么是XML xml全称为Extensible Markup Language,意思是可扩展的标记语言.XML语法上和HTML比较相似,但是HTML中的元素是固定的,而XML的标签是可以用户定义的 ...

  5. 【原创】查询占CPU高的oracle进程

    1:首先使用TOP命令传到占用CPU高的SPID号 PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND3575 oracle 1 12 ...

  6. asp.net 连接字符串的多种写法

    一.使用OleDbConnection对象连接OLE DB数据源 1.连接Access 数据库 Access 2000: “provider=Microsoft.Jet.Oledb.3.5;Data ...

  7. RocketMQ学习笔记(5)----RocketMQ监控平台rocketmq-console-ng的搭建

    1. 下载rocketmq-console-ng 官网地址:https://github.com/apache/rocketmq-externals 拉下来之后,使用idea打开rocketmq-co ...

  8. Vim常用命令及配置方案

    Vim常用命令及配置方案   几句话 很久之前就接触到vim,初学那阵觉得vim很酷炫,但确实对新手不是很友好.我也就简单看了下基本操作就上手了,但又不是长期在vim下工作,这就导致了每一次重新使用v ...

  9. [洛谷P2370]yyy2015c01的U盘

    题目大意:有n个文件,每个文件有一个大小和价值,有一个容量为s的U盘,要装这些文件.传输文件需要接口,一个大小为k的接口能传输的最大文件的大小为k.问最少要多大的接口,才能使传输的文件价值$\ge p ...

  10. Linux入门基础(一)

    UNIX/Linux 本身是没有图形界面的,我们通常在 UNIX/Linux 发行版上看到的图形界面实际都只是运行在 Linux 系统之上的一套软件XFree86,现在则是 xorg(X.Org),而 ...