BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作
Description
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
Input
第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
Output
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
Sample Input
1 0 1
0 1 0
1 0 0
Sample Output
6
HINT
对于100%的数据,N, M ≤ 2000
Source
题解:
对于第一问,我们简单DP就好了
第二问:http://blog.csdn.net/clove_unique/article/details/50512624
悬线法求最大子矩阵这么经典我不造
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = +, M = , mod = 1e9+, inf = 0x3f3f3f3f;
typedef long long ll;
//不同为1,相同为0
int dp[N][N],a[N][N],n,m,L[N][N],R[N][N],H[N][N];
void solve() {
for(int i=;i<=n;i++) {
L[i][] = ;
for(int j=;j<=m;j++) L[i][j] = (L[i][j-]+)*(a[i][j]^a[i][j-]);
R[i][m] = ;
for(int j=m-;j>=;j--) R[i][j] = (R[i][j+]+)*(a[i][j]^a[i][j+]);
}
for(int i=;i<=m;i++) H[][i]=;
for(int i=;i<=n;i++) {
for(int j=;j<=m;j++) {
if(a[i-][j]^a[i][j]) {
H[i][j] = H[i-][j]+;
L[i][j] = min(L[i-][j],L[i][j]);
R[i][j] = min(R[i-][j],R[i][j]);
}
else H[i][j] = ;
}
}
int ans = ;
for(int i=;i<=n;i++) {
for(int j=;j<=m;j++) {
ans=max(ans,H[i][j]*(R[i][j]+L[i][j]+));
}
}
cout<<ans<<endl;
}
void DP() {
for(int i=;i<=m;i++) dp[n][i] = ;
for(int i=;i<=n;i++) dp[i][m] = ;
int ans = ;
for(int i=n-;i>=;i--) {
for(int j=m-;j>=;j--) {
if(a[i][j]!=a[i+][j]&&a[i][j]!=a[i][j+]&&a[i][j]==a[i+][j+]) {
dp[i][j] = min(dp[i+][j],min(dp[i][j+],dp[i+][j+])) +;
ans = max(ans,dp[i][j]);
}
else dp[i][j] = ;
}
}
cout<<ans*ans<<endl;
}
int main() {
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) scanf("%d",&a[i][j]);
DP();
solve();
}
BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp的更多相关文章
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
- P1169 [ZJOI2007]棋盘制作——悬线法
---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...
- [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵
https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...
- P1169 [ZJOI2007]棋盘制作 悬线法or单调栈
思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
随机推荐
- [C++设计模式] strategy 策略模式
依照陈硕老师的观点.c++里有面向过程编程.面向对象编程,基于对象编程(面向接口编程)和泛型编程.四种思路都各有其适用场景. 面向过程编程是沿袭C的结构化编程思路,OOP是C++的核心,也是现代高级编 ...
- JavaScript——BOM(浏览器对象模型),时间间隔和暂停
BOM(浏览器对象模型):能够对浏览器的窗体进行訪问和操作 1.主要的BOM体系: window------------document-------------------------------- ...
- Linux less命令简介
less命令可以对文件或其它输出进行分页显示,与moe命令相似,但是比more命令要强大许多. 在 less 中导航命令类似于 vi,如下: 1 搜索 当使用命令 less file-name 打开一 ...
- poj--3678--Katu Puzzle(2-sat 建模)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Submit S ...
- 剑指offer——03从尾至头打印列表(Python3)
思路:相当于数据结构中的链表就地逆置,可以使用头插法来实现. 代码: class Solution: # 返回从尾部到头部的列表值序列,例如[1,2,3] def printListF ...
- batch normalization学习理解笔记
batch normalization学习理解笔记 最近在Andrew Ng课程中学到了Batch Normalization相关内容,通过查阅资料和原始paper,基本上弄懂了一些算法的细节部分,现 ...
- 11.MATLAB基本编程
概述: 1 脚本M文件 clear all; %设置精度 format long; %定义变量 n= s= %循环 :n s=s+/^i; end s format short; 2 函数M文件 fu ...
- C++之易混淆知识点四---虚函数与虚继承
C++面向对象中,虚函数与虚继承是两个完全不同的概念. 一.虚函数 C++程序中只要类中含有虚拟函数,编译程序都会为此类生成一个对应的虚拟函数跳转表(vtbl),该虚拟函数跳转表是一个又若干个虚拟函数 ...
- 移动端 | table 布局
<table border=” cellspacing="> <caption>表格标题</caption> <tr> <td alig ...
- 用endnote导入bib
首先一般时候需要把IEEE的style包导入. https://endnote.com/downloads/styles/ 具体方法可参考http://muchong.com/html/201006/ ...