这篇博客,给大家,体会不一样的版本编程。

代码

 package zhouls.bigdata.myMapReduce.wordcount4;

 import java.io.IOException;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils; public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ //该方法循环调用,从文件的split中读取每行调用一次,把该行所在的下标为key,该行的内容为value
protected void map(LongWritable key, Text value,
Context context)
throws IOException, InterruptedException {
String[] words = StringUtils.split(value.toString(), ' ');
for(String w :words){
context.write(new Text(w), new IntWritable(1));
}
}
}
 package zhouls.bigdata.myMapReduce.wordcount4;

 import java.io.IOException;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ //每组调用一次,这一组数据特点:key相同,value可能有多个。
protected void reduce(Text arg0, Iterable<IntWritable> arg1,
Context arg2)
throws IOException, InterruptedException {
int sum =0;
for(IntWritable i: arg1){
sum=sum+i.get();
}
arg2.write(arg0, new IntWritable(sum));
}
}

//System.setProperty("HADOOP_USER_NAME", "root");
//
//1、MR执行环境有两种:本地测试环境,服务器环境
//
//本地测试环境(windows):(便于调试)
// 在windows的hadoop目录bin目录有一个winutils.exe
// 1、在windows下配置hadoop的环境变量
// 2、拷贝debug工具(winutils.exe)到HADOOP_HOME/bin
// 3、修改hadoop的源码 ,注意:确保项目的lib需要真实安装的jdk的lib
//
// 4、MR调用的代码需要改变:
// a、src不能有服务器的hadoop配置文件(因为,本地是调试,去服务器环境集群那边的)
// b、再调用是使用:
// Configuration config = new Configuration();
// config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
// config.set("yarn.resourcemanager.hostname", "HadoopMaster");

//服务器环境:(不便于调试),有两种方式。
//首先需要在src下放置服务器上的hadoop配置文件(都要这一步)
//1、在本地直接调用,执行过程在服务器上(真正企业运行环境)
// a、把MR程序打包(jar),直接放到本地
// b、修改hadoop的源码 ,注意:确保项目的lib需要真实安装的jdk的lib
// c、增加一个属性:
// config.set("mapred.jar", "C:\\Users\\Administrator\\Desktop\\wc.jar");
// d、本地执行main方法,servlet调用MR。
//
//
//2、直接在服务器上,使用命令的方式调用,执行过程也在服务器上
// a、把MR程序打包(jar),传送到服务器上
// b、通过: hadoop jar jar路径 类的全限定名
//
//
//
//
//a,1 b,1
//a,3 c,3
//a,2 d,2
//
//
//a,3 c,3
//a,2 d,2
//a,1 b,1
//

 package zhouls.bigdata.myMapReduce.wordcount4;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class RunJob { public static void main(String[] args) {
Configuration config =new Configuration();
config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
config.set("yarn.resourcemanager.hostname", "HadoopMaster");
// config.set("mapred.jar", "C:\\Users\\Administrator\\Desktop\\wc.jar");//先打包好wc.jar
try {
FileSystem fs =FileSystem.get(config); Job job =Job.getInstance(config);
job.setJarByClass(RunJob.class); job.setJobName("wc"); job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path("/usr/input/wc/wc.txt"));//新建好输入路径,且数据源 Path outpath =new Path("/usr/output/wc");
if(fs.exists(outpath)){
fs.delete(outpath, true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f= job.waitForCompletion(true);
if(f){
System.out.println("job任务执行成功");
}
} catch (Exception e) {
e.printStackTrace();
}
}
}

Hadoop MapReduce编程 API入门系列之wordcount版本2(六)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

  2. Hadoop MapReduce编程 API入门系列之wordcount版本4(八)

    这篇博客,给大家,体会不一样的版本编程. 是将map.combiner.shuffle.reduce等分开放一个.java里.则需要实现Tool. 代码 package zhouls.bigdata. ...

  3. Hadoop MapReduce编程 API入门系列之wordcount版本5(九)

    这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount1; import java.io.IOException; i ...

  4. Hadoop MapReduce编程 API入门系列之wordcount版本3(七)

    这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount3; import java.io.IOException; i ...

  5. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  6. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  7. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  8. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  9. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

随机推荐

  1. CXF-JAX-WS开发(一)入门案例

    一.Web Service 1.定义 W3C定义,Web服务(Web service)应当是一个软件系统,用以支持网络间不同机器的互动操作. 2.作用 多系统间数据通信 二.CXF是什么? CXF是目 ...

  2. 通过Static 字段来维护状态是不是一个好主意

    static是申明静态字段.静态方法或者静态类的修饰符.使用static申明的字段属于类型本身而不属于任何字段,声明的类也具有一些特别特性,比如不能实例化,不能继承等.用通俗化的语言来说,static ...

  3. 【sqli-labs】 less24 POST- Second Order Injections *Real treat* -Stored Injections (POST型二阶注入 *真的好玩?* 存储注入)

    简单登陆浏览一遍后,发现是一个登陆注册修改密码的应用 审查一下代码 登陆页面的username,password使用了转义 注册页面的参数也进行了转义处理 但是在修改password的页面,直接从se ...

  4. raspberry pi树莓派设置

    买了个pi3b 安装系统 需要class10 TF卡.读卡器 下载系统并解压Raspbianhttps://www.raspberrypi.org/downloads/raspbian/访问慢的话请用 ...

  5. PAT_A1111#Online Map

    Source: PAT A1111 Online Map (30 分) Description: Input our current position and a destination, an on ...

  6. 57.query phase

    主要知识点: query phase步骤 query phase如何提升性能     一.query phase步骤 一次query phase一般包括以下三个步骤     The query pha ...

  7. Bootstrap关于表单控件(Radio,CheckBox)

    表单控件(复选框checkbox和单选择按钮radio) Bootstrap框架中checkbox和radio有点特殊,Bootstrap针对他们做了一些特殊化处理,主要是checkbox和radio ...

  8. 学习EXTJS6(5)基本功能-进度条组件

    Ext.ProgressBar有二种模式:手动和自动:手动:自己控制显示.进度.更新.清除.自动只需要调用Wait方法即可. 配置项:   配置项 类型 说明 renderTo String 指定页面 ...

  9. Ubuntu14.043下QT5.5的安装与一点问题

    请注明来自于 http://www.cnblogs.com/usegear/p/5100720.html 1.下载qt-opensource-linux-x86-5.5.0.run(去教育镜像网站下载 ...

  10. LCS,LIS,LCIS

    网站:CSUST 8月3日(LCS,LIS,LCIS) LCS:      以下讲解来自:http://blog.csdn.net/yysdsyl/article/details/4226630 [问 ...