这篇博客,给大家,体会不一样的版本编程。

代码

 package zhouls.bigdata.myMapReduce.wordcount4;

 import java.io.IOException;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils; public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ //该方法循环调用,从文件的split中读取每行调用一次,把该行所在的下标为key,该行的内容为value
protected void map(LongWritable key, Text value,
Context context)
throws IOException, InterruptedException {
String[] words = StringUtils.split(value.toString(), ' ');
for(String w :words){
context.write(new Text(w), new IntWritable(1));
}
}
}
 package zhouls.bigdata.myMapReduce.wordcount4;

 import java.io.IOException;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ //每组调用一次,这一组数据特点:key相同,value可能有多个。
protected void reduce(Text arg0, Iterable<IntWritable> arg1,
Context arg2)
throws IOException, InterruptedException {
int sum =0;
for(IntWritable i: arg1){
sum=sum+i.get();
}
arg2.write(arg0, new IntWritable(sum));
}
}

//System.setProperty("HADOOP_USER_NAME", "root");
//
//1、MR执行环境有两种:本地测试环境,服务器环境
//
//本地测试环境(windows):(便于调试)
// 在windows的hadoop目录bin目录有一个winutils.exe
// 1、在windows下配置hadoop的环境变量
// 2、拷贝debug工具(winutils.exe)到HADOOP_HOME/bin
// 3、修改hadoop的源码 ,注意:确保项目的lib需要真实安装的jdk的lib
//
// 4、MR调用的代码需要改变:
// a、src不能有服务器的hadoop配置文件(因为,本地是调试,去服务器环境集群那边的)
// b、再调用是使用:
// Configuration config = new Configuration();
// config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
// config.set("yarn.resourcemanager.hostname", "HadoopMaster");

//服务器环境:(不便于调试),有两种方式。
//首先需要在src下放置服务器上的hadoop配置文件(都要这一步)
//1、在本地直接调用,执行过程在服务器上(真正企业运行环境)
// a、把MR程序打包(jar),直接放到本地
// b、修改hadoop的源码 ,注意:确保项目的lib需要真实安装的jdk的lib
// c、增加一个属性:
// config.set("mapred.jar", "C:\\Users\\Administrator\\Desktop\\wc.jar");
// d、本地执行main方法,servlet调用MR。
//
//
//2、直接在服务器上,使用命令的方式调用,执行过程也在服务器上
// a、把MR程序打包(jar),传送到服务器上
// b、通过: hadoop jar jar路径 类的全限定名
//
//
//
//
//a,1 b,1
//a,3 c,3
//a,2 d,2
//
//
//a,3 c,3
//a,2 d,2
//a,1 b,1
//

 package zhouls.bigdata.myMapReduce.wordcount4;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class RunJob { public static void main(String[] args) {
Configuration config =new Configuration();
config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
config.set("yarn.resourcemanager.hostname", "HadoopMaster");
// config.set("mapred.jar", "C:\\Users\\Administrator\\Desktop\\wc.jar");//先打包好wc.jar
try {
FileSystem fs =FileSystem.get(config); Job job =Job.getInstance(config);
job.setJarByClass(RunJob.class); job.setJobName("wc"); job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path("/usr/input/wc/wc.txt"));//新建好输入路径,且数据源 Path outpath =new Path("/usr/output/wc");
if(fs.exists(outpath)){
fs.delete(outpath, true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f= job.waitForCompletion(true);
if(f){
System.out.println("job任务执行成功");
}
} catch (Exception e) {
e.printStackTrace();
}
}
}

Hadoop MapReduce编程 API入门系列之wordcount版本2(六)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

  2. Hadoop MapReduce编程 API入门系列之wordcount版本4(八)

    这篇博客,给大家,体会不一样的版本编程. 是将map.combiner.shuffle.reduce等分开放一个.java里.则需要实现Tool. 代码 package zhouls.bigdata. ...

  3. Hadoop MapReduce编程 API入门系列之wordcount版本5(九)

    这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount1; import java.io.IOException; i ...

  4. Hadoop MapReduce编程 API入门系列之wordcount版本3(七)

    这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount3; import java.io.IOException; i ...

  5. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  6. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  7. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  8. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  9. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

随机推荐

  1. 【sqli-labs】 less34 POST- Bypass AddSlashes (POST型绕过addslashes() 函数的宽字节注入)

    还是宽字节注入,POST版本的 uname=1&passwd=1%df' union select 1,2,3# 提交报错 列名不匹配,改一下就好了 uname=1&passwd=1% ...

  2. PowerShell 解决红字一闪而过问题

    起因 起初只想在 win7上实现 pause 效果而已 cmd /c pause | out-null 结果只能看到红字一闪而过 打开 PowerShell ISE 进行调试 这次清楚的看到红字提示 ...

  3. h5调用app中写好的的方法

    做h5页面的时候,总会遇到些不能解决的问题于是就要与app做一些交互, app那边编辑好的方法后我们怎么用js语法去调用app编写好的方法 if(this.$winInfo.shebei == 1){ ...

  4. vue中需要注意的问题总结(上)

    React 与其说是一种框架,倒不如说是一种开发范式.它的核心理念非常简单: 界面/视图就是数据结构的可视化表达UI = f(data) 而界面/视图由组件组合而来UI = f1(data) + f2 ...

  5. 【转】上拉下拉电阻、I/O输出(开漏、推挽等)

    作者:BakerZhang 链接:https://www.jianshu.com/p/3ac3a29b0f58来源:简书 感谢! ——————————————————————————————————— ...

  6. CentOS 7.2.1511编译安装Nginx1.10.1+MySQL5.7.15+PHP7.0.11

    准备篇 一.防火墙配置 CentOS 7.2默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop firewalld.se ...

  7. Firefly-rk3399 开发板环境搭建

    Firefly教程网站:http://wiki.t-firefly.com/zh_CN/Firefly-RK3399/started.html 系统烧录: http://wiki.t-firefly. ...

  8. 编码的由来,ASCII编码,和字节的形成

    一.编码的由来 计算机只能计算和识别二进制,必须让计算机识别文字,才能和计算机进行交互,彼此也才能通过计算机通信. 由此,有了ASCII编码的诞生,它起始于50年代后期,在1967年定案,是最初美国国 ...

  9. 利用python暴力破解压缩文件密码

    import randomimport sysimport zipfileimport timefrom threading import Threadfrom multiprocessing imp ...

  10. reset清除所有浏览器默认样式

    温馨提示 reset 的目的不是清除浏览器的默认样式, 这仅是部分工作. 清除和重置是紧密不可分的.reset 的目的不是让默认样式在所有浏览器下一致, 而是减少默认样式有可能带来的问题.reset ...