POJ 1186 方程的解数
| Time Limit: 15000MS | Memory Limit: 128000K | |
| Total Submissions: 6188 | Accepted: 2127 | |
| Case Time Limit: 5000MS | ||
Description
其中:x1, x2,...,xn是未知数,k1,k2,...,kn是系数,p1,p2,...pn是指数。且方程中的所有数均为整数。
假设未知数1 <= xi <= M, i=1,,,n,求这个方程的整数解的个数。
1 <= n <= 6;1 <= M <= 150。
方程的整数解的个数小于231。
★本题中,指数Pi(i=1,2,...,n)均为正整数。
Input
Output
Sample Input
3
150
1 2
-1 2
1 2
Sample Output
178
#include<stdio.h>
#include<stdlib.h>
#define Max 4000037
int hash[Max],num[Max];
//hash判断和的位置,num是和为s的个数 bool used[Max];
bool used[Max];
//判断hash是否用过
int n,M,k[],p[],cnt,mid;
int locat(int s)
{
int tmp=s;
while(tmp<)
{
tmp+=Max;
}
while(tmp>=Max)
{
tmp-=Max;
}
while(used[tmp]&&hash[tmp]!=s)
{
tmp++;
if(tmp>=Max)
{
tmp-=Max;
}
}
return tmp;
} void in_sert(int s)
{
int pos=locat(s);
hash[pos]=s;
used[pos]=;
num[pos]++;
}
void left_dfs(int d,int s) //左边一半的值的和的可能
{
if(d==mid)
{
in_sert(s);
return ;
}
for(int i=;i<=M;i++)
{
int tmp=k[d];
if(i!=&&tmp!=)
{
for(int j=;j<p[d];j++)
{
tmp*=i;
}
}
left_dfs(d+,s+tmp);
}
} void right_dfs(int d,int s) //右边所有和的可能如果左右相等,那么就加上这个和的所有可能
{
if(d==n)
{
s=-s;
int pos=locat(s);
if(hash[pos]==s)
{
cnt+=num[pos];
}
return ;
}
for(int i=;i<=M;i++)
{
int tmp=k[d];
if(i!=&&tmp!=)
{
for(int j=;j<p[d];j++)
{
tmp*=i;
}
}
right_dfs(d+,s+tmp);
}
}
int main()
{
int i,j;
scanf("%d",&n);
scanf("%d",&M);
for(i=;i<n;i++)
{
scanf("%d%d",&k[i],&p[i]);
}
mid=n/;
cnt=;
left_dfs(,);
right_dfs(mid,);
printf("%d\n",cnt);
return ;
}
POJ 1186 方程的解数的更多相关文章
- poj 1186 方程的解数【折半dfs+hash】
折半搜索,map会T所以用hash表来存状态 #include<iostream> #include<cstdio> #include<map> using nam ...
- Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- 【poj1186】 方程的解数
http://poj.org/problem?id=1186 (题目链接) 题意 已知一个n元高次方程: 其中:x1, x2,…,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数 ...
- [Swust OJ 166]--方程的解数(hash法)
题目链接:http://acm.swust.edu.cn/problem/0166/ Time limit(ms): 5000 Memory limit(kb): 65535 有如下方程组: A1 ...
随机推荐
- paip.php 5.0 5.3 5.4 5.5 -6.0的新特性总结与比较
paip.php 5.0 5.3 5.4 5.5 -6.0的新特性总结与比较 PHP5的新特性 2 · 对象的参照过渡是默认的(default) 3 · 引入访问属性的限制 3 · 引入访问方法的限 ...
- HTML5游戏开发进阶指南(亚马逊5星畅销书,教你用HTML5和JavaScript构建游戏!)
HTML5游戏开发进阶指南(亚马逊星畅销书,教你用HTML5和JavaScript构建游戏!) [印]香卡(Shankar,A.R.)著 谢光磊译 ISBN 978-7-121-21226-0 201 ...
- Leetcode 202 Happy Number 弗洛伊德判环解循环
今天先谈下弗洛伊德判环,弗洛伊德判环原来是在一个圈内有两人跑步,同时起跑,一人的速度是另一人的两倍,则那个人能在下一圈追上另一个人,弗洛伊德判环能解数字会循环出现的题,比如说判断一个链表是不是循环链表 ...
- 虚拟机下samba简单安装配置
系统是Win7 虚拟机是CenterOS6.5 1.关闭防火墙以及关闭SELINUX的强制模式(重要): service iptables stop//关闭防火墙 setenforce 0 //关闭S ...
- MongoDB学习笔记——索引管理
索引 索引能够提升查询的效率.没有索引,MongoDB必须扫描集合中的所有文档,才能找到匹配查询语句的文档. 索引是一种特殊的数据结构,将一小块数据集保存为容易遍历的形式.索引能够存储某种特殊字段或字 ...
- Memcached常规应用与分布式部署方案
1.Memcached常规应用 $mc = new Memcache(); $mc->conncet('127.0.0.1', 11211); $sql = sprintf("SELE ...
- easy UI获取数据,打开毕弹窗
<div id="modalwindow" class="easyui-window" data-options="modal:true,clo ...
- git在分支上创建目录和文件
创建一个空目录,在其中初始化git git init 创建一个新文件,此时默认在master分支上 touch file1.txt add到staging area git add file1.txt ...
- C#和.NET Framework的关系
Year .NET Framework C# 2002 1 1 2003 1.1 1 2005 2 2 泛型 2006 3 2 WPF\WCF\WF 2007 3.5 3 LINQ 2010 4 4 ...
- hadoop安装计
hadoop安装计 大体上按这个做就好了 http://blog.csdn.net/hitwengqi/article/details/8008203 需要修改hadoop-env.sh export ...