链接

求凸多边形内一点距离边最远。

做法:二分+半平面交判定。

二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核。

本想自己写一个向内推进。。仔细一看发现自己的平面交模板上自带。。

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100000
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
const int MAXN=;
int m;
double r;
int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y){}
};
point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点
void getline(point x,point y,double &a,double &b,double &c) //两点x、y确定一条直线a、b、c为其系数
{
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
}
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void initial()
{
for(int i = ; i <= m; ++i)p[i] = points[i];
p[m+] = p[];
p[] = p[m];
cCnt = m;//cCnt为最终切割得到的多边形的顶点数,将其初始化为多边形的顶点的个数
}
point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点
{
double u = fabs(a * x.x + b * x.y + c);
double v = fabs(a * y.x + b * y.y + c);
point pt;
pt.x=(x.x * v + y.x * u) / (u + v);
pt.y=(x.y * v + y.y * u) / (u + v);
return pt;
}
void cut(double a,double b ,double c)
{
curCnt = ;
for(int i = ; i <= cCnt; ++i)
{
if(a*p[i].x + b*p[i].y + c >= )q[++curCnt] = p[i];// c由于精度问题,可能会偏小,所以有些点本应在右侧而没在,
//故应该接着判断
else
{
if(a*p[i-].x + b*p[i-].y + c > ) //如果p[i-1]在直线的右侧的话,
{
//则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这样的话,由于精度的问题,核的面积可能会有所减少)
q[++curCnt] = intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x + b*p[i+].y + c > ) //原理同上
{
q[++curCnt] = intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i = ; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中
p[curCnt+] = q[];
p[] = p[curCnt];
cCnt = curCnt;
}
int solve(double r)
{
//注意:默认点是顺时针,如果题目不是顺时针,规整化方向
initial();
// for(int i = 1; i <= m; ++i)
// {
// double a,b,c;
// getline(points[i],points[i+1],a,b,c);
// cut(a,b,c);
// } //如果要向内推进r,用该部分代替上个函数
for(int i = ; i <= m; ++i){
point ta, tb, tt;
tt.x = points[i+].y - points[i].y;
tt.y = points[i].x - points[i+].x;
double k = r / sqrt(tt.x * tt.x + tt.y * tt.y);
tt.x = tt.x * k;
tt.y = tt.y * k;
ta.x = points[i].x + tt.x;
ta.y = points[i].y + tt.y;
tb.x = points[i+].x + tt.x;
tb.y = points[i+].y + tt.y;
double a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}
//多边形核的面积
// double area = 0;
// for(int i = 1; i <= curCnt; ++i)
// area += p[i].x * p[i + 1].y - p[i + 1].x * p[i].y;
// area = fabs(area / 2.0);
// printf("%.2f\n",area);
if(curCnt) return ;
return ; }
void GuiZhengHua(){
//规整化方向,逆时针变顺时针,顺时针变逆时针
for(int i = ; i < (m+)/; i ++)
swap(points[i], points[m-i]);
}
//void change(double d)
//{
// int i;
// for(i = 1; i <= m ;i++)
// {
// double len = dis(p[i],points[i+1]);
// double a = points[i+1].y-points[i].y;
// double b = points[i].x-points[i+1].x;
// double cos = a/len;
// double sin = b/len;
// points[i] = point(points[i].x+cos*d,points[i].y+sin*d);
// points[i+1] = point(points[i+1].x+cos*d,points[i+1].y+sin*d);
// }
//}
int main()
{
int i;
while(scanf("%d",&m)&&m)
{
for(i = ; i<=m; i++)
scanf("%lf%lf",&points[i].x,&points[i].y);
GuiZhengHua();
points[m+] = points[];
double rig = INF,lef = ,mid;
while(rig-lef>eps)
{
mid = (rig+lef)/2.0;
//change(mid);
if(solve(mid))
lef = mid;
else rig = mid;
}
printf("%.6f\n",lef);
}
return ;
}

poj3525Most Distant Point from the Sea(半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  5. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  6. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  7. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  8. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  9. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

随机推荐

  1. 修改ECSHOP后台的商品列表里显示该商品品牌

    如何在在ECSHOP后台的商品列表中也显示商品的品牌”.下面就来最模板讲一下如何来修改.此方法只保证在ECSHOP2.7.2版本下有效,其他版本请参照修改. 第一步:首先我们来打开程序文件: /adm ...

  2. win7下80端口被(Pid=4)占用的解决方法

    首先介绍一种网上普遍的方法,就是查找占据80端口的进程,然后关闭它就行了. 1.运行cmd,然后输入netstat -a -n -o,回车:2.查看开头几行包含0.0.0.0:80的那一行最后的pid ...

  3. 完整学习git一git设置

    1查看git版本 git --version ➜ php- git:(master) git --version git version 1.8.3.1 2告诉git当前用户的姓名和邮件地址 git ...

  4. [HTML]js动态修改表格里面的内容

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/T ...

  5. 深入学习netty系列(1)

    一.Server端的编程模型 示例代码1 EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup ...

  6. linux下使用tar命令(转)

    转至: http://www.cnblogs.com/li-hao/archive/2011/10/03/2198480.html 解压语法:tar [主选项+辅选项] 文件或者目录 使用该命令时,主 ...

  7. Unity5 Standard自发光材质无效解决方法

    受光物和发光物都要勾选Static才会有效. 如果不够选静态就是用HDR光照,需要相机勾选HDR 所以如果是动态的物体真实发光,Unity依旧无法支持

  8. tomcant报错The APR based Apache Tomcat Native library which allows optimal performance in production environments was not found on the java.library.path

    下载与你Tomcat对应版本的 tcnative-1.dll,放到apache-tomcat-7.0.57\bin 目录下,重启tomcat http://archive.apache.org/dis ...

  9. [转]人人网首页拖拽上传详解(HTML5 Drag&Drop、FileReader API、formdata)

    人人网首页拖拽上传详解(HTML5 Drag&Drop.FileReader API.formdata) 2011年12月11日 | 彬Go 上一篇:给力的 Google HTML5 训练营( ...

  10. php修改和增加xml结点属性

    <?xml version="1.0" encoding="UTF-8" ?> <clientSet> <server url=& ...