NOI2010能量采集(数论)
没想到NOI竟然还有这种数学题,看来要好好学数论了……
网上的题解:
完整的结题报告:
首先我们需要知道一个知识,对于坐标系第一象限任意的整点(即横纵坐标均为整数的点)p(n,m),其与原点o(0,0)的连线上除过原点整点的个数为gcd(n,m)。其他象限上个数则为gcd(abs(n),abs(m)),这里的gcd(a,b)是指a与b的最大公约数(Greastest Common Divisor),abs(a)是指数a的绝对值。
证明:
考虑在op上最小的一个整点(x,y),这里的最小是指横纵坐标绝对值最小,x与y必然满足gcd(x,y)=1,即x与y互质。因为若不互质的话,将x与y均除去他们的公约数后可以产生一个更小的整点。则显然有(kx,ky){x<=kx<=n,k属于正整数}也在线段op上,而且这些点也是op上全部的整点,显然这些点的个数等于最大的那个k。为方便叙述我们直接将其称为k,其满足kx=n,ky=m。则显然k=gcd(n,m),证明完毕。
则现在我们只需要求出每一个gcd(n,m)即可,这里我们可以使用经典的欧几里德算法,其的复杂度为O(lgb),b为两个数中较小的那个。总的复杂度将为O(n^2lgn)但是考虑到此题的规模极大,此方法必然超时。
进一步考虑,我们不难发现要求的最大公约数的规模相对于所有数对的规模要小的多。所以我们可以转而求对于一个数p(p<min(n,m)),满足gcd(a,b)=p的数对(a,b)的个数。
令num[i]表示最大公约数为i的数对的个数,bound为min(n,m)。首先可以知道公约数有i的数对的个数应为(n div i)*(m div i),这个是比较好想的,然而并没有满足要求,因为i并不为最大公约数。不过处理方法很简单,考虑到这些当前的数对可能存在比i更大的公约数为2i,3i,4i...ki(ki<=bound),只需将这些数对删去即可。
这样我们就有了整体框架,首先可以直接求出num[bound] = (n div bound)*(m div bound),按照从大到小的顺序求num[i]即可,num[i] = (n div i)*(m div i)-Sigma(num[ki]) , 1<=ki<=bound) (那个求和的符号我打不出来...)
则代价的总和为2*Sigma(num[i]*i)-nm(因为题目中要求的线段上的整点不包括端点,而我们算的gcd(a,b),其中包括了点(a,b))。
我的代码:
var n,m,ans,d:int64;
g:longint;
f:array[..] of int64;
function min(x,y:int64):int64;
begin
if x<y then min:=x else min:=y;
end;
begin
ans:=;
readln(n,m);
for g:=min(n,m) downto do
begin
f[g]:=(n div g)*(m div g);
d:=g+g;
while d<=min(n,m) do
begin
dec(f[g],f[d]);
inc(d,g);
end;
end;
for g:=min(n,m) downto do
inc(ans,f[g]*(*g-));
writeln(ans);
end.
ps:f[i]:=(n div i )* (m div i)
在这个式子中,即使 f 数组为 int64 数组,但n,m为 longint ,当n=m=100000时还是会发生溢出,所以n,m也必为 inf64
这种容易忽视的错误需要注意,即参与四则运算的变量必须能承载运算结果!
UPD:更简单的莫比乌斯反演
sigma(gcd(x,y))1<=x<=n,1<=y<=m=sigma(fai[k]*(n/k)*(m/k)) 1<=k<=min(n,m)
线性筛就行了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 100000+5
#define maxm 100000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
ll n,m,p[maxn],tot,fai[maxn];
ll ans;
bool v[maxn];
inline void get()
{
fai[]=;
for2(i,,m)
{
if(!v[i])p[++tot]=i,fai[i]=i-;
for1(j,tot)
{
int k=p[j]*i;
if(k>m)break;
v[k]=;
if(i%p[j])fai[k]=fai[i]*(p[j]-);
else {fai[k]=fai[i]*p[j];break;}
}
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();
if(n<m)swap(n,m);
get();
for1(i,m)ans+=fai[i]*(n/i)*(m/i);
cout<<n*m+*(ans-n*m)<<endl;
return ;
}
NOI2010能量采集(数论)的更多相关文章
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- Luogu P1447 [NOI2010]能量采集 数论??欧拉
刚学的欧拉反演(在最后)就用上了,挺好$qwq$ 题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$ 原式 $=2*\sum_{i=1}^{N}\sum_ ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- BZOJ 2015:[Noi2010]能量采集(数论+容斥原理)
2005: [Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物 ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- luogu1447 [NOI2010]能量采集 莫比乌斯反演
link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...
- BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
- noi2010 能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB Submit: 3068 Solved: 1820 [Submit][Sta ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 1831 Solved: 1086[Submit][Statu ...
随机推荐
- AWK 介绍
一.模式和动作 awk脚本是由模式和操作组成的:pattern {action} pattern与{action}两者是可选的.如果没有模式,则action应用到全部记录,如果没有action,则输出 ...
- 手把手教你写LKM rookit! 之 杀不死的pid&root后门
......上一节,我们编写了一个基本的lkm模块,从功能上来说它还没有rootkit的特征,这次我们给它添加一点有意思的功能.我们让一个指定的进程杀不死, 曾经,想写一个谁也杀不死的进程,进程能捕捉 ...
- windows 与fedora时间差
windows 默认BIOS时间当前时间UTC+时区, 按北京时间时区,就是要加8个小时. Linux默认BIOS时间是UTC时间,所以同一机子上装WINDOWS与LINUX时间上会差8个小时.这问题 ...
- grunt项目配置
安装完CLI,还要在项目安装Grunt npm install -g grunt-cli npm install grunt --save-dev 源码放在src下 package.json放在根目录 ...
- 编译andriod源码出错:java.lang.UnsupportedClassVersionError: com/google/doclava/Doclava : Unsupported
问题:java.lang.UnsupportedClassVersionError: com/google/doclava/Doclava : Unsupported update-java-alte ...
- UI元素的相对自适应
什么是UI元素的相对自适应 UI元素的相对自适应,顾名思义,是指两个UI元素之间保持一种相对的位置不要变化,例如,UI元素A永远处于UI元素B右边的50像素处位置.再比如,一个UI背景框,不论屏幕尺寸 ...
- 【BZOJ 1295】 [SCOI2009]最长距离
Description windy有一块矩形土地,被分为 N*M 块 1*1 的小格子. 有的格子含有障碍物. 如果从格子A可以走到格子B,那么两个格子的距离就为两个格子中心的欧几里德距离. 如果从格 ...
- 利用JQuery的$.ajax()可以很方便的调用asp.net的后台方法
利用JQuery的$.ajax()可以很方便的调用asp.net的后台方法. 先来个简单的实例热热身吧. 1.无参数的方法调用 asp.net code: view plaincopy to clip ...
- bnu 4351 美女来找茬(水水)
http://www.bnuoj.com/bnuoj/problem_show.php?pid=4351 [题意]:用最小的矩形框,框住像素点差超过5的点. [题解]:求坐标x,y最大最小值 [cod ...
- TCP/IP协议原理学习笔记
昨天学习了杨宁老师的TCP/IP协议原理第一讲和第二讲,主要介绍了OSI模型,整理如下: OSI是open system innerconnection的简称,即开放式系统互联参考模型,它把网络协议从 ...