【转】Netty那点事(三)Channel中的Pipeline
【原文】https://github.com/code4craft/netty-learning/blob/master/posts/ch3-pipeline.md
Channel是理解和使用Netty的核心。Channel的涉及内容较多,这里我使用由浅入深的介绍方法。在这篇文章中,我们主要介绍Channel部分中Pipeline实现机制。为了避免枯燥,借用一下《盗梦空间》的“梦境”概念,希望大家喜欢。
一层梦境:Channel实现概览
在Netty里,Channel是通讯的载体,而ChannelHandler负责Channel中的逻辑处理。
那么ChannelPipeline是什么呢?我觉得可以理解为ChannelHandler的容器:一个Channel包含一个ChannelPipeline,所有ChannelHandler都会注册到ChannelPipeline中,并按顺序组织起来。
在Netty中,ChannelEvent是数据或者状态的载体,例如传输的数据对应MessageEvent,状态的改变对应ChannelStateEvent。当对Channel进行操作时,会产生一个ChannelEvent,并发送到ChannelPipeline。ChannelPipeline会选择一个ChannelHandler进行处理。这个ChannelHandler处理之后,可能会产生新的ChannelEvent,并流转到下一个ChannelHandler。
例如,一个数据最开始是一个MessageEvent,它附带了一个未解码的原始二进制消息ChannelBuffer,然后某个Handler将其解码成了一个数据对象,并生成了一个新的MessageEvent,并传递给下一步进行处理。
到了这里,可以看到,其实Channel的核心流程位于ChannelPipeline中。于是我们进入ChannelPipeline的深层梦境里,来看看它具体的实现。
二层梦境:ChannelPipeline的主流程
Netty的ChannelPipeline包含两条线路:Upstream和Downstream。Upstream对应上行,接收到的消息、被动的状态改变,都属于Upstream。Downstream则对应下行,发送的消息、主动的状态改变,都属于Downstream。ChannelPipeline接口包含了两个重要的方法:sendUpstream(ChannelEvent e)和sendDownstream(ChannelEvent e),就分别对应了Upstream和Downstream。
对应的,ChannelPipeline里包含的ChannelHandler也包含两类:ChannelUpstreamHandler和ChannelDownstreamHandler。每条线路的Handler是互相独立的。它们都很简单的只包含一个方法:ChannelUpstreamHandler.handleUpstream和ChannelDownstreamHandler.handleDownstream。
Netty官方的javadoc里有一张图(ChannelPipeline接口里),非常形象的说明了这个机制(我对原图进行了一点修改,加上了ChannelSink,因为我觉得这部分对理解代码流程会有些帮助):
什么叫ChannelSink呢?ChannelSink包含一个重要方法ChannelSink.eventSunk,可以接受任意ChannelEvent。"sink"的意思是"下沉",那么"ChannelSink"好像可以理解为"Channel下沉的地方"?实际上,它的作用确实是这样,也可以换个说法:"处于末尾的万能Handler"。最初读到这里,也有些困惑,这么理解之后,就感觉简单许多。只有Downstream包含ChannelSink,这里会做一些建立连接、绑定端口等重要操作。为什么UploadStream没有ChannelSink呢?我只能认为,一方面,不符合"sink"的意义,另一方面,也没有什么处理好做的吧!
这里有个值得注意的地方:在一条“流”里,一个ChannelEvent并不会主动的"流"经所有的Handler,而是由上一个Handler显式的调用ChannelPipeline.sendUp(Down)stream产生,并交给下一个Handler处理。也就是说,每个Handler接收到一个ChannelEvent,并处理结束后,如果需要继续处理,那么它需要调用sendUp(Down)stream新发起一个事件。如果它不再发起事件,那么处理就到此结束,即使它后面仍然有Handler没有执行。这个机制可以保证最大的灵活性,当然对Handler的先后顺序也有了更严格的要求。
顺便说一句,在Netty 3.x里,这个机制会导致大量的ChannelEvent对象创建,因此Netty 4.x版本对此进行了改进。twitter的finagle框架实践中,就提到从Netty 3.x升级到Netty 4.x,可以大大降低GC开销。有兴趣的可以看看这篇文章:https://blog.twitter.com/2013/netty-4-at-twitter-reduced-gc-overhead
下面我们从代码层面来对这里面发生的事情进行深入分析,这部分涉及到一些细节,需要打开项目源码,对照来看,会比较有收获。
三层梦境:深入ChannelPipeline内部
DefaultChannelPipeline的内部结构
ChannelPipeline的主要的实现代码在DefaultChannelPipeline类里。列一下DefaultChannelPipeline的主要字段:
public class DefaultChannelPipeline implements ChannelPipeline {
private volatile Channel channel;
private volatile ChannelSink sink;
private volatile DefaultChannelHandlerContext head;
private volatile DefaultChannelHandlerContext tail;
private final Map<String, DefaultChannelHandlerContext> name2ctx =
new HashMap<String, DefaultChannelHandlerContext>(4);
}
这里需要介绍一下ChannelHandlerContext这个接口。顾名思义,ChannelHandlerContext保存了Netty与Handler相关的的上下文信息。而咱们这里的DefaultChannelHandlerContext,则是对ChannelHandler的一个包装。一个DefaultChannelHandlerContext内部,除了包含一个ChannelHandler,还保存了"next"和"prev"两个指针,从而形成一个双向链表。
因此,在DefaultChannelPipeline中,我们看到的是对DefaultChannelHandlerContext的引用,而不是对ChannelHandler的直接引用。这里包含"head"和"tail"两个引用,分别指向链表的头和尾。而name2ctx则是一个按名字索引DefaultChannelHandlerContext用户的一个map,主要在按照名称删除或者添加ChannelHandler时使用。
sendUpstream和sendDownstream
前面提到了,ChannelPipeline接口的两个重要的方法:sendUpstream(ChannelEvent e)和sendDownstream(ChannelEvent e)。所有事件的发起都是基于这两个方法进行的。Channels类有一系列fireChannelBound之类的fireXXXX方法,其实都是对这两个方法的facade包装。
下面来看一下这两个方法的实现。先看sendUpstream(对代码做了一些简化,保留主逻辑):
public void sendUpstream(ChannelEvent e) {
DefaultChannelHandlerContext head = getActualUpstreamContext(this.head);
head.getHandler().handleUpstream(head, e);
}
private DefaultChannelHandlerContext getActualUpstreamContext(DefaultChannelHandlerContext ctx) {
DefaultChannelHandlerContext realCtx = ctx;
while (!realCtx.canHandleUpstream()) {
realCtx = realCtx.next;
if (realCtx == null) {
return null;
}
}
return realCtx;
}
这里最终调用了ChannelUpstreamHandler.handleUpstream来处理这个ChannelEvent。有意思的是,这里我们看不到任何"将Handler向后移一位"的操作,但是我们总不能每次都用同一个Handler来进行处理啊?实际上,我们更为常用的是ChannelHandlerContext.handleUpstream方法(实现是DefaultChannelHandlerContext.sendUpstream方法):
public void sendUpstream(ChannelEvent e) {
DefaultChannelHandlerContext next = getActualUpstreamContext(this.next);
DefaultChannelPipeline.this.sendUpstream(next, e);
}
可以看到,这里最终仍然调用了ChannelPipeline.sendUpstream方法,但是它会将Handler指针后移。
我们接下来看看DefaultChannelHandlerContext.sendDownstream:
public void sendDownstream(ChannelEvent e) {
DefaultChannelHandlerContext prev = getActualDownstreamContext(this.prev);
if (prev == null) {
try {
getSink().eventSunk(DefaultChannelPipeline.this, e);
} catch (Throwable t) {
notifyHandlerException(e, t);
}
} else {
DefaultChannelPipeline.this.sendDownstream(prev, e);
}
}
与sendUpstream好像不大相同哦?这里有两点:一是到达末尾时,就如梦境二所说,会调用ChannelSink进行处理;二是这里指针是往前移的,所以我们知道了:
UpstreamHandler是从前往后执行的,DownstreamHandler是从后往前执行的。在ChannelPipeline里添加时需要注意顺序了!
DefaultChannelPipeline里还有些机制,像添加/删除/替换Handler,以及ChannelPipelineFactory等,比较好理解,就不细说了。
回到现实:Pipeline解决的问题
好了,深入分析完代码,有点头晕了,我们回到最开始的地方,来想一想,Netty的Pipeline机制解决了什么问题?
我认为至少有两点:
一是提供了ChannelHandler的编程模型,基于ChannelHandler开发业务逻辑,基本不需要关心网络通讯方面的事情,专注于编码/解码/逻辑处理就可以了。Handler也是比较方便的开发模式,在很多框架中都有用到。
二是实现了所谓的"Universal Asynchronous API"。这也是Netty官方标榜的一个功能。用过OIO和NIO的都知道,这两套API风格相差极大,要从一个迁移到另一个成本是很大的。即使是NIO,异步和同步编程差距也很大。而Netty屏蔽了OIO和NIO的API差异,通过Channel提供对外接口,并通过ChannelPipeline将其连接起来,因此替换起来非常简单。
理清了ChannelPipeline的主流程,我们对Channel部分的大致结构算是弄清楚了。可是到了这里,我们依然对一个连接具体怎么处理没有什么概念,下篇文章,我们会分析一下,在Netty中,捷径如何处理连接的建立、数据的传输这些事情。
PS: Pipeline这部分拖了两个月,终于写完了。中间写的实在缓慢,写个高质量(至少是自认为吧!)的文章不容易,但是仍不忍心这部分就此烂尾。中间参考了一些优秀的文章,还自己使用netty开发了一些应用。以后这类文章,还是要集中时间来写完好了。
参考资料:
【转】Netty那点事(三)Channel中的Pipeline的更多相关文章
- Netty那点事: 概述, Netty中的buffer, Channel与Pipeline
Netty那点事(一)概述 Netty和Mina是Java世界非常知名的通讯框架.它们都出自同一个作者,Mina诞生略早,属于Apache基金会,而Netty开始在Jboss名下,后来出来自立门户ne ...
- Netty源码分析--创建Channel(三)
恩~,没错,其实这一篇才是真正的开始分析源码,你打我呀~. 先看一下我Netty的启动类 private void start() throws Exception { EventLoopGroup ...
- Netty 零拷贝(三)Netty 对零拷贝的改进
Netty 零拷贝(三)Netty 对零拷贝的改进 Netty 系列目录 (https://www.cnblogs.com/binarylei/p/10117436.html) Netty 的&quo ...
- Netty核心概念(5)之Channel
1.前言 上一节讲了Netty的第一个关键启动类,启动类所做的一些操作,和服务端的channel固定的handler执行过程,谈到了不管是connect还是bind方法最终都是调用了channel的相 ...
- MySQL事务在MGR中的漫游记—路线图
欢迎访问网易云社区,了解更多网易技术产品运营经验. MGR即MySQL Group Replication,是MySQL官方推出的基于Paxos一致性协议的数据高可靠.服务高可用方案.MGR在20 ...
- 一个I/O线程可以并发处理N个客户端连接和读写操作 I/O复用模型 基于Buf操作NIO可以读取任意位置的数据 Channel中读取数据到Buffer中或将数据 Buffer 中写入到 Channel 事件驱动消息通知观察者模式
Tomcat那些事儿 https://mp.weixin.qq.com/s?__biz=MzI3MTEwODc5Ng==&mid=2650860016&idx=2&sn=549 ...
- javascript基础程序(算出一个数的平方值、算出一个数的阶乘、输出!- !- !- !- !- -! -! -! -! -! 、函数三个数中的最大数)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- ytu 1061: 从三个数中找出最大的数(水题,模板函数练习 + 宏定义练习)
1061: 从三个数中找出最大的数 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 154 Solved: 124[Submit][Status][We ...
- 求三数中Max和猜拳游戏
方法一: Console.WriteLine("请输入三个数字:"); int a = int.Parse(Console.ReadLine()); int b = int.Par ...
随机推荐
- 关于fedora下jdk的安装
http://zhumeng8337797.blog.163.com/blog/static/1007689142012472620637/ alternative命令 http://blog.csd ...
- R语言笔记:快速入门
1.简单会话 > x<-c(1,2,4) > x [1] 1 2 4 R语言的标准赋值运算符是<-.也可以用=,不过不建议用它,有些情况会失灵.其中c表示连接(concaten ...
- Memcache+Cookie解决分布式系统共享登录状态------------------------------Why Memcached?
每个用户请求向IIS发送一个请求,但IIS服务器的请求数有限,cpu支持的线程数有限,如果一秒钟向这台服务器发送10000次,那么则一般就会有问题,考虑集群, 请求数据分流,几台服务器共同对应一个公共 ...
- 爬虫实现(hpricot)
1.基本代码 在gemfile中加入gem "hpricot",bundler install之后,在application.rb中require "hpricot&qu ...
- 【HDOJ】1667 The Rotation Game
1. 题目描述有个#字型的条带,可以从横线或竖线进行循环移动,求通过各种移动最终使中心的8个字符全等的长度最短并相同长度字典序最小的操作序列.2. 基本思路24个数据,8种移动方式,数据量很小了,所以 ...
- 变量赋值(引用) php内核的实现(二)
<?php $a=1; $b=&$a; $c=2; $a=&$c; echo $a."\n"; echo $b; 2 1 结论: 首先保存 左值的内存地址, ...
- [LOJ 1038] Race to 1 Again
C - Race to 1 Again Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu D ...
- RPi 2B UART作为调试口或者普通串口
/************************************************************************************** * RPi 2B UAR ...
- (三)学习JavaScript之getElementsByTagName方法
参考:http://www.w3school.com.cn/jsref/met_doc_getelementsbytagname.asp HTML DOM Document 对象 定义和用法 getE ...
- ODAC访问oracle时,提示:由于以前的函数求值超时,函数求值被禁用,必须继续执行才能正常返回
这是因为调试时会自动对Local/Watch等窗口里面(或鼠标停留所在)的变量求值,为了防止用户写的程序错误(比如死循环),系统有一个超时限制,如果某个属性的get中做了很复杂的操作(而不是简单地返回 ...