最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助。

顺带附上老师写的教程


安装Caffe并运行Mnist例程

我主要参考了这篇教程:Mac极简安装Caffe并训练MNIST。然后进行了examples文件夹里的Mnist的训练,期间并没有碰到什么问题。

将图片转换为LMDB文件

Mnist中已经给出了现成的LMDB数据文件,在实际项目中,需要我们将图片文件转换为LMDB文件。可以参考下examples里的imagenet,里面的readme写了完整的过程,也可以参考上面贴的教程。在这里就不复述了,主要说下注意点:

转换文件只要参考imagenet的create_imagenet.sh并更改相应路径即可,如下:

set -e
#生成的lmdb文件夹位置
EXAMPLE=examples/myMnistTest
#train.txt和val.txt位置
DATA=examples/myMnistTest/MNIST_Dataset
#tools文件夹位置,写相对位置的话要在caffe根目录运行
TOOLS=build/tools
#train图片位置
TRAIN_DATA_ROOT=/Users/messier/caffe/examples/myMnistTest/MNIST_Dataset/train_images/
#val图片位置
VAL_DATA_ROOT=/Users/messier/caffe/examples/myMnistTest/MNIST_Dataset/train_images/ # Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
#这边写成false,我写了true结果生成了10个多GB的lmdb...不过训练出来的模型还是能用的
RESIZE=true
if $RESIZE; then
RESIZE_HEIGHT=256
RESIZE_WIDTH=256
else
RESIZE_HEIGHT=0
RESIZE_WIDTH=0

开始训练

这一步之前可以选择进行计算图像均值的操作。然后去mnist文件夹中把之前用到过的prototxt拿过来,更改路径,按之前的操作进行即可。

要注意的是,没进行过均值操作的话,要把所有的mean_pixel注释掉。

在opencv中调用训练好的模型

opencv3.3中将dnn模块从contrib中提到了主仓库中,可以直接调用caffe训练好的模型,且不需要任意依赖。

这里我主要参考了opencv中一个用caffe模型识别航空飞机的sample

稍加修改即可。

首先要把几个文件的路径改下,如下:

    String modelTxt = "lenet_deploy.prototxt";
String modelBin = "_iter_6714.caffemodel";
String imageFile = (argc > 1) ? argv[1] : "3_00715.jpg";

需要注意的是,当时训练用的模型文件不能在这里直接用了,要把输入和输出改下,如下:

  1. 更改输入

    原来:
name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "./train_lmdb"
batch_size: 64
backend: LMDB
}
}

更改为:

name: "LeNet"
input: "data"
input_dim: 1 #每次输入图片数
input_dim: 1 #channels
input_dim: 256 #width
input_dim: 256 #height

2.更改输出:

原来:

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}

更改为:

layer {
name: "prob"
type: "Softmax"
bottom: "ip2"
top: "prob"
}

在这里推荐下老师告诉我的caffe网络可视化工具Netscope

看下更改前后的网络:



最后程序运行结果如下:


12.12更新:程序源码已经上传了,直接用cmake构建工程即可。

顺带再略微解析下程序的流程:

1、 载入模型文件

readNetFromCaffe(modelTxt, modelBin);

2、 读取图片,转换为blob的数据格式。

Mat inputBlob = blobFromImage(img, 0.00390625f, Size(256, 256), Scalar(), false); //Convert Mat to batch of images

看下这个函数,第一个参数是图片,第二个参数是训练时的特征缩放系数,这里是1/256,第三个参数是blob对应的图片大小,之前说过,我在训练时误把图像缩放到了256* 256,这里输入图像大小还是28 * 28的,但作为输入要缩放到256*256,第四个参数是各通道均值,我没作均值处理所以给默认值,第六个参数的意思是是否交换R B通道,这里是单通道图片所以不交换。

3、 前向传播,计算各个label的prob,结果用一个10维向量保存。

Mat prob;
cv::TickMeter t;
for (int i = 0; i < 10; i++)
{
CV_TRACE_REGION("forward");
net.setInput(inputBlob, "data"); //set the network input
t.start();
prob = net.forward("prob"); //compute output
t.stop();
}

4、 找出prob最大的label,输出结果。

getMaxClass(prob, &classId, &classProb);

caffe+opencv3.3dnn模块 完成手写数字图片识别的更多相关文章

  1. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  2. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  3. 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...

  4. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  5. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

  6. Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几

    首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...

  7. opencv实现KNN手写数字的识别

    人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...

  8. 用tensorflow求手写数字的识别准确率 (简单版)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = in ...

  9. LSTM用于MNIST手写数字图片分类

    按照惯例,先放代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 ...

随机推荐

  1. Node Sass could not find a binding for your current environment 解决办法

    具体错误如下: 解决办法: 命令行执行  npm rebuild node-sass  命令(如果不行,则先运行npm install node-sass命令执行再执行 npm rebuild nod ...

  2. 线性表(存储结构数组)--Java 实现

    /*线性表的数组实现 *特点:插入删除慢需要平均移动一半的数据,查找较快 *注意:有重复和无重复的数据对应的操作会有些不同 *注意数组一旦创建其大小就固定了 *Java集合长度可变是由于创建新的数组将 ...

  3. 树莓派.使用Node.js控制GPIO

    树莓派上的40个GPIO是最好玩的东西 它们可以被C,/C++, Python, Java等语言直接控制 现在就来看看怎么用Node.js做到同样的事情 在试验之前, 请先安装好Node.js, 具体 ...

  4. java基础解析系列(九)---String不可变性分析

    java基础解析系列(九)---String不可变性分析 目录 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析系列(二)---In ...

  5. Coursera上视频无法播放将怎么解决?

    相信很多朋友在播放Coursera中的视频都会遇到一个问题,视频全黑,点击播放,进度条转了一圈又消失不见. 这时候我们该找找是什么问题啦? 解决方法一: 如果你是FQ看的网课视频,那么你把VPN从au ...

  6. HDU 5783 Divide the Sequence (训练题002 B)

    Description Alice has a sequence A, She wants to split A into as much as possible continuous subsequ ...

  7. Hello Kiki(中国剩余定理——不互质的情况)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  8. 交换知识 VLAN VTP STP 单臂路由

    第1章 交换基础 1.1 园区网分层结构 层次 作用 出口层 广域网接入 出口策略 带宽控制 核心层 高速转发 服务器接入 路由选择 汇聚层 流量汇聚 链路冗余 设备冗余 路由选择 接入层 用户接入 ...

  9. JS5模拟类

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. 一起写框架-Ioc内核容器的实现-基础功能-ComponentScan支持组件注解限制(七)

    实现功能 以上的代码我们发现.我们都是将@ComponentScan扫描的路径下的所有类都加载到容器中的. 而实际需求,我们并不希望所有的类都创建对象,而是加了组件注解@Controller,@Ser ...