MT【182】系数奇怪的二次函数
设函数$f(x)=3ax^2-2(a+b)x+b,$其中$a>0,b\in R$
证明:当$0\le x\le 1$时,$|f(x)|\le \max\{f(0),f(1)\}$
分析:由$a>0$知道$\max\{f(0),f(1)\}=\max\{|f(0)|,|f(1)|\}$
则\begin{align*}
|f(x)| & \le |(3x^2-4x+1)f(0)+(3x^2-2x)f(1)| \\
&\le(|3x^2-4x+1|+|3x^2-2x|)\max\{|f(0)|,|f(1)|\}\\
&= \max\{|6x^2-6x+1|,|-2x+1|\}\max\{|f(0)|,|f(1)|\}\\
&\le\max\{|f(0)|,|f(1)|\}
\end{align*}
注:奇怪的系数如果结合定积分在几何上是显然的。
练习:
(2012浙江压轴题)
已知$a>0,b\in R$,函数$f(x)=4ax^3-2bx-a+b$.
1)证明:当$0\le x\le 1$时,
i)函数$f(x)$的最大值为$|2a-b|+a;$
ii)$f(x)+|2a-b|+a\ge0$
2)若$-1\le f(x)\le 1$对$x\in[0,1]$恒成立,求$a+b$的范围.
MT【182】系数奇怪的二次函数的更多相关文章
- MT【219】构造二次函数
(2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f ...
- MT【54】一道二次函数问题的几何意义
[Rather less, but better.]----卡尔·弗里德里希·高斯(1777-1855) (2016诸暨质检18)已知$f(x)=x^2-a|x-1|+b(a>0,b>-1 ...
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- MT【9】绝对值二次函数
解答: 评:容易用绝对值不等式证明当$x\in[1,5]$时$|x^2+px+q|\ge2$
- MT【114】构造二次函数
评:b+c,bc好比向量里的一组基底,可以将关于b,c的对称式表示出来.
- 关于SVM数学细节逻辑的个人理解(三) :SMO算法理解
第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t. 这个优化问题的. 虽然这个优化问题只剩下了α这一个变 ...
- 转悠望南山 Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线 ...
- 【刷题】BZOJ 4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一 ...
随机推荐
- x window的奥秘
阅读目录 了解自己机器上的 X Window 理解 display 和虚拟控制台 远程连接 X Server 理解 lightdm 和 X Window 桌面环境的启动过程 搞定 xauth X Se ...
- UML类图(Unified Modeling Language Class Diagrams)
统一建模语言(UML) | 类图 什么是UML? UML是一种用于可视化描述系统,具有广泛用途的建模语言.作为一种标准化的图形语言,在软件工业中被用于软件系统部件的具体化,可视化,结构化描述以及撰写 ...
- mfc CProgressCtrl
CProgressCtrl常用属性 CProgressCtrl类常用成员函数 CProgressCtrl代码示例 一.CProgressCtrl控件属性 当我们在处理大程序时,常常需要耗很长时间(比如 ...
- TDD 与 CI 在 Python 中的实践
社区化产品的长久生存之道可能莫过于对迭代周期的控制.还记得以前采用老土的阶段开发的年代,将软件生命周期分为各个阶段,当到达每个阶段的里程碑则集中所有的资源.人力作全面冲刺.每次到了里程碑的检查点冲过了 ...
- python中列表的常用操作增删改查
1. 列表的概念,列表是一种存储大量数据的存储模型. 2. 列表的特点,列表具有索引的概念,可以通过索引操作列表中的数据.列表中的数据可以进行添加.删除.修改.查询等操作. 3. 列表的基本语法 创建 ...
- Qt连接数据库的两种方法
我曾经想过,无论在哪个平台下开发,都不要再接触SQL Server了,但显然不行.我们是来看世界的,不是来改变世界的,想通就好. 前两天,尝试了一下Qt下远程访问数据库.在macOS下,用Qt 5.1 ...
- OpenGL学习(2)——绘制三角形
在创建窗口的基础上,添加代码实现三角形的绘制. 声明和定义变量 在屏幕上绘制一个三角形需要的变量有: 三角形的三个顶点坐标: Vertex Buffer Object 将顶点数据存储在GPU的内存中: ...
- python+selenium安装方法
一.准备工具: 下载 python[python 开发环境] http://python.org/getit/ 下载 setuptools [python 的基础包工具] http://pypi.py ...
- 详细聊聊k8s deployment的滚动更新(二)
一.知识准备 ● 本文详细探索deployment在滚动更新时候的行为 ● 相关的参数介绍: livenessProbe:存活性探测.判断pod是否已经停止 readinessProbe:就绪 ...
- PAT甲题题解-1037. Magic Coupon (25)-贪心,水
题目说了那么多,就是给你两个序列,分别选取元素进行一对一相乘,求得到的最大乘积. 将两个序列的正和负数分开,排个序,然后分别将正1和正2前面的相乘,负1和负2前面的相乘,累加和即可. #include ...