P1559 运动员最佳匹配问题[最大费用最大流]
题目描述
羽毛球队有男女运动员各n人。给定2 个n×n矩阵P和Q。P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势;Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势。由于技术配合和心理状态等各种因素影响,P[i][j]不一定等于Q[j][i]。男运动员i和女运动员j配对组成混合双打的男女双方竞赛优势为P[i][j]*Q[j][i]。设计一个算法,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。
解析
这道题n很小,爆搜拿满分不成问题,但是本人不喜欢爆搜,还经常写错。
显然我们要求的是一个二分图最大带权匹配,最大费用最大流求之,spfa最长路+EK最大流。
当然,这道题明显是一个完备匹配,KM算法也可以,但是我没学。
注意细节,建费用边时,反向边设置边权为正向边的相反数。
感性理解一下,首先要明白增广路径算法中路径是可以反悔的,意思就是一条路搜到不合法的时候还可以沿着反向边回溯而答案不受影响,所以我们在反悔时就要用费用的相反数抵消掉影响。
参考代码
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define N 51
#define M 10010
#define INF 0x3f3f3f3f
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
struct rec{
int next,ver,leng,edge;
}g[M<<1];
int head[M],tot=1,d[M],n,p[N][N],q[N][N],now[N],pre[N];
int ans;
bool v[M];
inline void add(int x,int y,int val,int e)
{
g[++tot].ver=y,g[tot].leng=val,g[tot].edge=e;
g[tot].next=head[x],head[x]=tot;
}
inline bool spfa()
{
fill(d,d+N,-INF);
memset(v,0,sizeof(v));
queue<int> q;
v[0]=1;d[0]=0;now[0]=INF;q.push(0);
while(q.size()){
int x=q.front();q.pop();
v[x]=0;
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver,z=g[i].edge,leng=g[i].leng;
if(!leng||d[y]>=d[x]+z) continue;
d[y]=d[x]+z;
now[y]=min(now[x],leng);
pre[y]=i;
if(!v[y]) v[y]=1,q.push(y);
}
}
if(d[2*n+1]==-INF) return 0;
else return 1;
}
inline void change()
{
ans+=d[2*n+1]*now[2*n+1];
int tmp=2*n+1;
while(tmp!=0){
int i=pre[tmp];
g[i].leng-=now[2*n+1];
g[i^1].leng+=now[2*n+1];
tmp=g[i^1].ver;
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i) add(0,i,1,0),add(i,0,0,0),add(i+n,n*2+1,1,0),add(n*2+1,i+n,0,0);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
p[i][j]=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
q[i][j]=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
add(i,j+n,1,p[i][j]*q[j][i]),add(j+n,i,0,-p[i][j]*q[j][i]);
while(spfa()) change();
cout<<ans<<endl;
return 0;
}
P1559 运动员最佳匹配问题[最大费用最大流]的更多相关文章
- [洛谷 P1559] 运动员最佳匹配问题
题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...
- P1559 运动员最佳匹配问题
题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...
- 【题解】P1559 运动员最佳匹配问题
[题目](https://www.luogu.com.cn/problem/P1559) 题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组 ...
- 洛谷p1559运动员最佳匹配问题
题目 搜索 可行性剪枝 虽然这题目是我搜二分图的标签搜到的 但是n比较小 明显可以暴力 然而只有80分 再加上可行性剪纸就行啦 就是记所有运动员他所能匹配到的最大值. 在我们搜索到第i层的时候 如果他 ...
- KM模板 最大权匹配(广搜版) Luogu P1559 运动员最佳匹配问题
KM板题: #include <bits/stdc++.h> using namespace std; inline void read(int &num) { char ch; ...
- P1559 运动员最佳匹配问题 by hyl 天梦
#include<iostream> using namespace std; int n; int maxx[21][21]; int lie[21]; int aa[21]; int ...
- Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)
Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...
- 运动员最佳匹配问题 KM算法:带权二分图匹配
题面: 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势. ...
- [Luogu 1559]运动员最佳匹配问题
Description 题库链接 求 \(2\times N\) 个点的带权二分图最佳匹配. \(1\leq N\leq 20\) Solution 我还是太菜了啊...到现在才学 \(KM\) . ...
随机推荐
- php_MVC实现步骤二
2.match_split 显示逻辑相分离 将功能强制分成两个部分,显示html文件,和逻辑PHP文件: 要求浏览器请求负责功能的PHP逻辑文件: 该PHP逻辑文件,对需要的显示内容进行载入. 逻辑P ...
- Java开发笔记(一百零七)URL地址的组成格式
URL的全称是Uniform Resource Locator,意思是统一资源定位符,俗称网络地址或网址.网络上的每个文件及接口,都有对应的URL网址,它规定了其他设备如何通过一系列的路径找到自己,犹 ...
- c++无关类型指针的强制转换原理的分析和尝试
因最近看到大量的c类型指针强制转换,联系到c++的reinterpret_cast强制转换符,故总结一下. 先上图 由图中可以看出,先声明了一个结构体t与一个含有三个元素的数组num,接着声明一个指向 ...
- 转发:for /f命令之—Delims和Tokens用法&总结
在For命令语踞饽参数F中,最难理解的就是Delims和Tokens两个选项,本文简单的做一个比较和总拮.“For /f”常用来解析文本,读取字符串.分工上,delims负责切分字符串,而tokens ...
- 前端 html篇
web开发本质: html是一个标准,规定了大家怎么写网页 1.浏览器输入网址回车发生了什么事 1. 浏览器 给服务端 发送了一个消息2. 服务端拿到消息3. 服务端返回消息4. 浏览器展示页面 se ...
- Python 实用第三方库安装方法
下面将自己学习过程中总结的Python第三方库的安装常用三种方法分享给大家,本人推荐前面两种方式.(已安装Python) 方法一:pip命令行直接安装 打开cmd命令窗口,通过命令 pip insta ...
- centos7 设置 查看 开机 启动项
1.查看开机自启项centos7自启项已不用chkconfig改为:systemctl list-unit-files左边是服务名称,右边是状态,enabled是开机启动,disabled是开机不启动 ...
- isolate两三事
1.1. 第一步:创建并握手 如前所述,Isolate 不共享任何内存并通过消息进行交互,因此,我们需要找到一种方法在「调用者」与新的 isolate 之间建立通信. 每个 Isolate 都暴露了一 ...
- 四 python中关于OOP的常用术语
抽象/实现 抽象指对现实世界问题和实体的本质表现,行为和特征建模,建立一个相关的子集,可以用于 绘程序结构,从而实现这种模型.抽象不仅包括这种模型的数据属性,还定义了这些数据的接口. 对某种抽象的实现 ...
- flex 布局学习
flex 布局学习 寻根溯源话布局 一切都始于这样一个问题:怎样通过 CSS 简单而优雅的实现水平.垂直同时居中.记得刚开始学习 CSS 的时候,看到 float 属性不由得感觉眼前一亮,顺理成章的联 ...