泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features
Tightly-Coupled Aided Inertial Navigation with Point and Plane Features
具有点和平面特征的紧密耦合辅助惯性导航
Yulin Yang∗, Patrick Geneva††, Xingxing Zuo†, Kevin Eckenhoff∗, Yong Liu†, and Guoquan Huang∗
This paper presents a tightly-coupled aided inertial navigation system (INS) with point and plane features, a general sensor fusion framework applicable to any visual and depth sensor (e.g., RGBD, LiDAR) configuration, in which the camera is used for point feature tracking and depth sensor for plane extraction. The proposed system exploits geometrical structures (planes) of the environments and adopts the closest point (CP) for plane parameterization. Moreover, we distinguish planar point features from non-planar point features in order to enforce point-on-plane constraints which are used in our state estimator, thus further exploiting structural information from the environment. We also introduce a simple but effective plane feature initialization algorithm for feature-based simultaneous localization and mapping (SLAM). In addition, we perform online spatial calibration between the IMU and the depth sensor as it is difficult to obtain this critical calibration parameter in high precision. Both Monte-Carlo simulations and real-world experiments are performed to validate the proposed approach.
本文提出了一种具有点和平面特征的紧密耦合辅助惯性导航系统(INS),一种适用于任何视觉和深度传感器(例如RGBD,LiDAR)配置的通用传感器融合框架,其中相机用于点特征 跟踪和深度传感器用于平面提取。所提出的系统利用环境的几何结构(平面),并采用最接近点(CP)进行平面参数化。此外,我们将平面点特征与非平面点特征区分开,以强制执行在我们的状态估计器中使用的点对平面约束,从而进一步利用环境中的结构信息。我们还为基于特征的同时定位和建图(SLAM)引入了一种简单而有效的平面特征初始化算法。 另外,由于很难以高精度获得此关键校准参数,因此我们在IMU和深度传感器之间执行在线空间校准。 蒙特卡洛模拟和真实世界的实验都可以验证所提出的方法。
泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features的更多相关文章
- 泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis
http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf Aided Inertial Navigation: Unified Feature R ...
- 泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation
张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 基于无人机的向下平面 ...
- 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps
Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
张宁 Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...
- 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints
张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...
- 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...
- 泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle
Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranj ...
- 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area
A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...
随机推荐
- 树莓派安装系统+ssh登录
一.准备工作: (1)树莓派3b (2)官网下载系统 (3)SD卡 (4)网线 (5)SDFormatter.exe (6)win32diskimager.exe (7)putty (7)笔记本 二. ...
- Linux操作系统之更改启动菜单的背景图实战案例
Linux操作系统之更改启动菜单的背景图实战案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.制作图像并上传到服务器 1>.使用window 10操作系统自带的画图工具 ...
- opencv图片压缩视频并读取
import os import cv2 import numpy as np import time path = './new_image/' filelist = os.listdir(path ...
- 解决 Vue 刷新页面后 store 数据丢失的问题
原来的状态(页面刷新数据会重置) state: { teamA: '主队' }, mutations: { data_teamA(state, x) { state.teamA = x } }, ...
- 学.Net Core Web Api开发 ---- 系列文章
循序渐进学.Net Core Web Api开发系列[1]:开发环境 循序渐进学.Net Core Web Api开发系列[2]:利用Swagger调试WebApi 循序渐进学.Net Core We ...
- python开发笔记-变长字典Series的使用
Series的基本特征: 1.类似一维数组的对象 2.由数据和索引组成 import pandas as pd >>> aSer=pd.Series([1,2.0,'a']) > ...
- 如何让VS像CB一样使用
之前用VS,先是完成了GLUT库下的opengl使用: 然后得知GLUT有些过时,又按照教程接触了GLFW库下,反正对我来说是有些复杂. 今天正式试一试用VS来写ACM的题目,发现不能定义string ...
- Win如何查看某个端口被谁占用并停掉
第一步在我们的电脑上按win+R键打开运行,输入cmd, 第二步进去命令提示符之后,输入“netstat -ano”,按回车键,查出所有端口,如下图所示: 第三步如果我们想找8089端口,输入nets ...
- LeetCode 1219. Path with Maximum Gold
原题链接在这里:https://leetcode.com/problems/path-with-maximum-gold/ 题目: In a gold mine grid of size m * n, ...
- LeetCode 1130. Minimum Cost Tree From Leaf Values
原题链接在这里:https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/ 题目: Given an array arr of ...