Tightly-Coupled Aided Inertial Navigation with Point and Plane Features

具有点和平面特征的紧密耦合辅助惯性导航

Yulin Yang∗, Patrick Geneva††, Xingxing Zuo†, Kevin Eckenhoff∗, Yong Liu†, and Guoquan Huang∗

This paper presents a tightly-coupled aided inertial navigation system (INS) with point and plane features, a general sensor fusion framework applicable to any visual and depth sensor (e.g., RGBD, LiDAR) configuration, in which the camera is used for point feature tracking and depth sensor for plane extraction. The proposed system exploits geometrical structures (planes) of the environments and adopts the closest point (CP) for plane parameterization. Moreover, we distinguish planar point features from non-planar point features in order to enforce point-on-plane constraints which are used in our state estimator, thus further exploiting structural information from the environment. We also introduce a simple but effective plane feature initialization algorithm for feature-based simultaneous localization and mapping (SLAM). In addition, we perform online spatial calibration between the IMU and the depth sensor as it is difficult to obtain this critical calibration parameter in high precision. Both Monte-Carlo simulations and real-world experiments are performed to validate the proposed approach.

本文提出了一种具有点和平面特征的紧密耦合辅助惯性导航系统(INS),一种适用于任何视觉和深度传感器(例如RGBD,LiDAR)配置的通用传感器融合框架,其中相机用于点特征 跟踪和深度传感器用于平面提取。所提出的系统利用环境的几何结构(平面),并采用最接近点(CP)进行平面参数化。此外,我们将平面点特征与非平面点特征区分开,以强制执行在我们的状态估计器中使用的点对平面约束,从而进一步利用环境中的结构信息。我们还为基于特征的同时定位和建图(SLAM)引入了一种简单而有效的平面特征初始化算法。 另外,由于很难以高精度获得此关键校准参数,因此我们在IMU和深度传感器之间执行在线空间校准。 蒙特卡洛模拟和真实世界的实验都可以验证所提出的方法。

泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features的更多相关文章

  1. 泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis

    http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf Aided Inertial Navigation: Unified Feature R ...

  2. 泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

    张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 基于无人机的向下平面 ...

  3. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

  4. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  5. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  6. 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints

    张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...

  7. 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU

    Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...

  8. 泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

    Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranj ...

  9. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

随机推荐

  1. Github 上 10 个值得学习的 Springboot 开源项目

    Spring Boot 几乎继承了所有 Spring 框架的优点,同时还可以让项目的配置更简化.编码更简化.部署更方便.近两年受到很多开发者的追捧,也是火热的不行! 下面给大家整理了 10 个 Git ...

  2. sklearn.model_selection 的train_test_split方法和参数

    train_test_split是sklearn中用于划分数据集,即将原始数据集划分成测试集和训练集两部分的函数. from sklearn.model_selection import train_ ...

  3. 异常错误:在可以调用 OLE 之前,必须将当前线程设置为单线程单元(STA)模式

    最近做一个蛋疼的东西就是C#调用windows API 来操作一个摄像头,自动处理一些东西.要用到剪切板复制 粘贴功能,即 Clipboard.SetDataObject(filedic, true) ...

  4. libpng 漏洞分析

    相关资源 PNG文件格式文档 http://www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html https://www.myway5.com/index.p ...

  5. 珠峰 - 郭永峰react课程 node es6 babel学习笔记

    npm install babel-cli -g //安装babel babel index.js -o a.js //等同于 babel index.js --out-file a.js 复制ind ...

  6. C语言 define实现的宏函数汇总

    最大值,最小值 #define MAX( x, y ) ( (x) > (y) ? (x) : (y) )#define MIN( x, y ) ( (x) < (y) ? (x) : ( ...

  7. UFUN函数 UF_ATTR函数(UF_ATTR_assign ,UF_ATTR_read_value )

    UF_initialize(); tag_t ; ]="零件名称"; UF_ATTR_value_t value; value.type=UF_ATTR_string; value ...

  8. BZOJ 4890: [Tjoi2017]城市 树形dp

    标签:树形dp,枚举,树的直径 一上来看到这个题就慌了,只想到了 $O(n^3)$ 的做法. 碰到这种题时要一步一步冷静地去分析,观察数据范围. 首先,$n\leqslant 5000$,所以可以先 ...

  9. P2210 Haywire

    P2210 Haywire 模拟退火练手题 #include<cmath> #include<ctime> #include<cstdio> #include< ...

  10. 使用docker 基于centos7制作mysql镜像

    说明:由于业务需要使用centos7.6+mysql5.7+jdk8以及其他的java程序,本想在网上找一个现成的,发现镜像都不适合我. 一.yum方式安装mysql 1.编写dockerfile文件 ...