HDU - 4059: The Boss on Mars (容斥 拉格朗日 小小的优化搜索)
pro: T次询问,每次给出N(N<1e8),求所有Σi^4 (i<=N,且gcd(i,N)==1) ;
sol: 因为N比较小,我们可以求出素因子,然后容斥。 主要问题就是求1到P的4次幂和。 我们知道K次幂和是一个K+1次多项式。
这里有公式Pre=P*(P+1)*(2P+1)*(3P^2+3P-1)/30; 在不知道公式的情况下,我们可以用拉格朗日差值法求。
1,下面给出DFS容斥的代码 。
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const ll Mod=1e9+;
int p[maxn],tot,N,T,ans,Rev=;
void init()
{
ll tN=N; tot=; ans=;
for(int i=;i<=tN/i;i++){
if(tN%i==){
p[++tot]=i;
while(tN%i==) tN/=i;
}
}
if(tN>) p[++tot]=tN;
}
int get(ll y)
{
ll res=y*(y+)%Mod;
res=(y*+)%Mod*res%Mod;
res=(y*y%Mod*%Mod+(y*-)%Mod)*res%Mod;
res=res*Rev%Mod;
return res;
return 1LL*y*(y+)%Mod*(y*%Mod+)%Mod*((3LL*y%Mod*y%Mod+y*%Mod-+Mod)%Mod)%Mod*Rev%Mod;
}
void dfs(int pos,int opt,ll sum)
{
if(pos==tot+){
ll t=1LL*sum*sum%Mod*sum%Mod*sum%Mod;
ll x=get(N/sum);
x=x*t%Mod;
if(opt==) ans=(ans+x)%Mod;
else ans=((ans-x)%Mod+Mod)%Mod;
return ;
}
dfs(pos+,opt,sum);
dfs(pos+,-opt,sum*p[pos]);
}
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d",&N);
init();
dfs(,,1LL);
printf("%d\n",ans);
}
return ;
}
2,这里的DFS还可以小小的优化一下, 想象一下,DFS的过程是遍历一颗二叉树,那么它遍历了所有的节点, 而且遍历的过程是老老实实一步步走下去的,所以还可以优化一下。 假设不操作则加入左儿子,有操作进入右儿子。 由于每次我遍历到叶子节点才进行计算, 所以很多时候,我向左走其实进行了一些没有价值的访问,会浪费一些时间。
而我现在可以在非叶子节点就进行计算,非叶子节点代表的是一直左走代表的叶子(即用节点代表对应的叶子,减少了不必要的访问)。 这样的话,不会存在浪费。 (虽然在此题中未体现出优劣性,但是去年深圳热身赛有一道搜索题就需要这样才能过。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int Mod=1e9+;
int p[maxn],tot,N,T,ans,Rev=;
void init()
{
int tN=N; tot=; ans=;
for(int i=;i*i<=tN;i++){
if(tN%i==){
p[++tot]=i;
while(tN%i==) tN/=i;
}
}
if(tN>) p[++tot]=tN;
}
void dfs(int pos,int opt,int sum) //稍微优化后的DFS
{
int t=1LL*sum*sum%Mod*sum%Mod*sum%Mod;
int y=N/sum;
int x=1LL*y*(y+)%Mod*(y*+)%Mod*(1LL*y*y*%Mod+y*-)%Mod*Rev%Mod;
if(opt==) (ans+=1LL*x*t%Mod)%=Mod;
else ((ans-=1LL*x*t%Mod)+=Mod)%=Mod;
for(int i=pos+;i<=tot;i++){
dfs(i,-opt,sum*p[i]);
}
}
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d",&N);
init();
dfs(,,);
printf("%d\n",ans);
}
return ;
}
3,以及把公式改为拉格朗日差值来求的代码,4次多项式,前缀和为5次多项式,可以通过求前6项来求:(当然这里的拉格朗日还可以优化为O(N),我懒得改了
#include<bits/stdc++.h>
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int Mod=1e9+;
int X[maxn]={,,,,,,},Y[maxn]={,,,,,,};
int p[maxn],tot,N,T,ans,Rev=;
int qpow(int a,int x)
{
int res=; while(x){
if(x&) res=1LL*res*a%Mod;
x>>=; a=1LL*a*a%Mod;
}
return res;
}
int Lange(int K)
{
int res=;
rep(i,,) {
int tmp=Y[i];
rep(j,,) {
if(j==i) continue;
tmp=1LL*tmp*(K-X[j])%Mod*qpow(X[i]-X[j],Mod-)%Mod;
tmp=(tmp+Mod)%Mod;
}
(res+=tmp)%=Mod;
}
return res;
}
void init()
{
int tN=N; tot=; ans=;
for(int i=;i*i<=tN;i++){
if(tN%i==){
p[++tot]=i;
while(tN%i==) tN/=i;
}
}
if(tN>) p[++tot]=tN;
}
void dfs(int pos,int opt,int sum) //稍微优化后的DFS
{
int t=1LL*sum*sum%Mod*sum%Mod*sum%Mod;
int y=N/sum;
int x=Lange(y);
if(opt==) (ans+=1LL*x*t%Mod)%=Mod;
else ((ans-=1LL*x*t%Mod)+=Mod)%=Mod;
for(int i=pos+;i<=tot;i++){
dfs(i,-opt,sum*p[i]);
}
}
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d",&N);
init();
dfs(,,);
printf("%d\n",ans);
}
return ;
}
HDU - 4059: The Boss on Mars (容斥 拉格朗日 小小的优化搜索)的更多相关文章
- hdu 4059 The Boss on Mars 容斥
题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我 ...
- 数论 + 容斥 - HDU 4059 The Boss on Mars
The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...
- hdu 4059 The Boss on Mars
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4059 The Boss on Mars 容斥原理
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4059 The Boss on Mars(容斥原理 + 四次方求和)
传送门 The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 4059 The Boss on Mars(容斥原理)
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4059 The Boss on Mars(纳入和排除)
http://acm.hdu.edu.cn/showproblem.php?pid=4059 定义S = 1^4 + 2^4 + 3^4+.....+n^4.如今减去与n互质的数的4次方.问共降低了多 ...
- bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 261 Solved: 165[Submit][Status ...
- hdu 5792(树状数组,容斥) World is Exploding
hdu 5792 要找的无非就是一个上升的仅有两个的序列和一个下降的仅有两个的序列,按照容斥的思想,肯定就是所有的上升的乘以所有的下降的,然后再减去重复的情况. 先用树状数组求出lx[i](在第 i ...
随机推荐
- POJ-图论-最短路模板(邻接矩阵)
POJ-图论-最短路模板 一.Floyd算法 刚读入数据时,G为读入的图邻接矩阵,更新后,G[i][j]表示结点i到结点j的最短路径长度 int G[N][N];//二维数组,其初始值即为该图的邻接矩 ...
- 【快捷键】【idea】的eclipse格式化快捷键Ctrl+Shift+F与win10冲突的解决方法
1.多按一个win键解决[Ctrl+Shift+Win+F],试了一下,只要F键最后按就可以了 注意:win键就是微软的logo键 2.先按Ctrl+F,然后松开F键[注意不要松开Ctrl键],再按S ...
- SpringBoot中使用Thymeleaf模板
1.引入pom依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId& ...
- SQL Server 将数据导出为XML和Json
有时候需要一次性将SQL Server中的数据导出给其他部门的也许进行关联或分析,这种需求对于SSIS来说当然是非常简单,但很多时候仅仅需要一次性导出这些数据而建立一个SSIS包就显得小题大做,而SQ ...
- PostgreSQL 预写日志机制(WAL)
关于持久性 持久性是指,事务提交后,对系统的影响必须是永久的,即使系统意外宕机,也必须确保事务提交时的修改已真正永久写入到永久存储中. 最简单的实现方法,当然是在事务提交后立即刷新事务修改后的数据到磁 ...
- 全能中间件v19.5.7 正式版发布
v19.5.7 更新=========================1.新增 支持更多微信公众号API.2.优化 AccessToken 刷新机制.3.修复 微信公众号“消息加解密方式”为“安全模式 ...
- 【LEETCODE】71、验证二叉树的前序序列化
简单粗暴,代码有待优化,不过自己独立完成,没有参考任何材料,还是比较满意的 package y2019.Algorithm.stack.medium; import java.util.Stack; ...
- Vivado关联Modelsim进行联合仿真
Vivado自带仿真工具,但是有点慢,关联Modelsim联合仿真是最好的,注意Modelsim必须是10.7以上版本. 1.安装并成功破解Modelsim 10.7. 2.打开Vivado,点击 T ...
- VMware Workstation 15 Player使用centos页面版本如何查看ip
首先运行要使用的centos镜像,输入密码登陆进去 因为是界面版,所以就不需要再镜像中输入命令,但是因为这样又找不到没法用ifconfig查看ip怎么办? 这个就是类似于一个系统页面版本的linux ...
- 2019 讯飞java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.讯飞等公司offer,岗位是Java后端开发,因为发展原因最终选择去了讯飞,入职一年时间了,也成为了面试官,之 ...