死锁的定义:

1、一般的死锁

一般的死锁是指多个线程的执行必须同时拥有多个资源,由于不同的线程需要的资源被不同的线程占用,最终导致僵持的状态,这就是一般死锁的定义。
package com.cxt.thread;  

public class TestDeadLock extends Thread{
boolean b;
DeadLock lock;
public TestDeadLock(boolean b, DeadLock lock) {
super();
this.b = b;
this.lock = lock;
}
public static void main(String[] args) {
DeadLock lock = new DeadLock();
TestDeadLock t1 = new TestDeadLock(true, lock);
TestDeadLock t2 = new TestDeadLock(false, lock);
t1.start();
t2.start();
}
@Override
public void run() {
if(this.b){
lock.m1();
}
else
lock.m2();
} } class DeadLock {
Object o1 = new Object();
Object o2 = new Object(); void m1(){
synchronized(o1){
System.out.println("m1 Lock o1 first");
synchronized(o2){
System.out.println("m1 Lock o2 second");
}
}
}
void m2(){
synchronized(o2){
System.out.println("m2 Lock o2 first");
synchronized(o1){
System.out.println("m2 Lock o1 second");
}
}
}
}

如代码所示我们可知:线程t1,t2都需要对象o1,o2才能正常地完成功能,但是由于他们所持的对象与要获得的对象刚好相反,使得两条线程一直僵持,

最终导致死锁。
 
解决方法:等其中一条线程完全执行完之后再执行另外一条线程。
推广到多条线程,按一定的顺序执行多条线程。
另外一种方法就是设置优先级,如果运行多条线程出现死锁,优先级低的回退,优先级高的先执行这样即可解决死锁问题。
 
 

2、嵌套管程锁死

 
线程1获得A对象的锁。
线程1获得对象B的锁(同时持有对象A的锁)。
线程1决定等待另一个线程的信号再继续。
线程1调用B.wait(),从而释放了B对象上的锁,但仍然持有对象A的锁。 线程2需要同时持有对象A和对象B的锁,才能向线程1发信号。
线程2无法获得对象A上的锁,因为对象A上的锁当前正被线程1持有。
线程2一直被阻塞,等待线程1释放对象A上的锁。 线程1一直阻塞,等待线程2的信号,因此,不会释放对象A上的锁,
而线程2需要对象A上的锁才能给线程1发信号……

看代码:

package com.cxt.Lock;  

import com.cxt.thread.Synchronizer;
import com.cxt.thread.TestLock; //lock implementation with nested monitor lockout problem
/**
* 一个坑爹的嵌套管程锁死,区别于死锁
*/
public class Lock {
protected MonitorObject monitorObject = new MonitorObject();
protected boolean isLocked = false; public static void main(String[] args) {
Lock l = new Lock();
l.isLocked = true; MyRunnable r1 = new MyRunnable(l, );
MyRunnable r2 = new MyRunnable(l, );
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);
t1.start();
t2.start();
/*
* 時而鎖住,時而釋放,因為另外兩條線程沒有有时捕捉不到isLocked = false
*/
// for (int i = 0; i < 100; i++) {
// l.isLocked = false;
// try {
// Thread.sleep(10);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// }
// } public void lock() throws InterruptedException {
// 当执行这个方法时,isLocked=true时,其他方法无论执行lock方法还是执行Unlock方法都会导致管程死锁
// 只有手动将isLocked 设置为false才能解决死锁,设置为false时必须让其他线程检测到,所以必须设置时间长一点
synchronized (this) {
while (isLocked) {
synchronized (this.monitorObject) {
this.monitorObject.wait();
}
}
isLocked = true;
}
} public void unlock() {
synchronized (this) {
this.isLocked = false;
synchronized (this.monitorObject) {
this.monitorObject.notify();
}
}
} static class MyRunnable implements Runnable {
Lock l = null;
int i; public MyRunnable(Lock l, int i) {
this.l = l;
this.i = i;
} @Override
public void run() {
try {
if (i % == ) {
this.l.lock();
} else {
this.l.unlock();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
} }
}
 
 

我们观察lock()方法,执行lock()时,当isLocked 为true时,问题就来了,执行monitorObject的方法块,

但是monitorObject变成了等待状态,但是这是外面的this锁还是被此线程持有的,如果有其他线程要执行lock()
或者unLock(),此时都会产生无限等待的状态,此线程也因此永远处于无限带等待其他线程来唤醒monitorObject的状态,
最终就一直僵持着。
 
解决方法手动将isLocked设为false.
 
这一种较坑,编代码时别没事找事做。
 

3、重入锁死

package com.cxt.Lock;  

public class Lock2{
private boolean isLocked = false; public static void main(String[] args) {
Lock2 lock = new Lock2(); MyRunnable r1 = new MyRunnable(lock, true);
MyRunnable r2 = new MyRunnable(lock, false);
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);
t1.start(); // t2.start();
}
public synchronized void lock()
throws InterruptedException{
while(isLocked){
wait();
}
isLocked = true;
} public synchronized void unlock(){
isLocked = false;
notify();
} static class MyRunnable implements Runnable{
Lock2 l = null;
boolean flag = false;
public MyRunnable(Lock2 l, boolean flag) {
this.l = l;
this.flag = flag;
}
@Override
public void run() {
if(flag == true)
try {
// 如果连续执行两次lock(),就会产生系统无限等待的状态
// 解决方法就是在两次中间执行一次unLock()方法
l.lock();
System.out.println("Lock!");
// l.unlock();
// System.out.println("Unlock!");
l.lock();
System.out.println("Lock!");
} catch (InterruptedException e) {
e.printStackTrace();
}
else
l.unlock();
} }
}

当连续执行两次lock()时会出现:

第一次,isLocked为false,执行完把isLocked设为true.
第二次,isLocked为true,此时就会处于无限等待的状态。
 
解决方法,两个lock()中间执行一次unLock方法,或者由另外一条线程来执行一次unLock()方法。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
【重入锁】
package com.text;

public class Lock2{
private boolean isLocked = false; public static void main(String[] args) {
Lock2 lock = new Lock2(); MyRunnable r1 = new MyRunnable(lock, true);
MyRunnable r2 = new MyRunnable(lock, false);
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);
t1.start(); // t2.start();
}
public synchronized void lock()
throws InterruptedException{
while(isLocked){
System.out.println("synchronized wait()!");
unlock();
wait();
}
isLocked = true;
System.out.println("synchronized lock!");
} public synchronized void unlock(){
isLocked = false;
notify();
System.out.println("synchronized unlock!");
} static class MyRunnable implements Runnable{
Lock2 l = null;
boolean flag = false;
public MyRunnable(Lock2 l, boolean flag) {
this.l = l;
this.flag = flag;
}
@Override
public void run() {
if(flag == true)
try {
// 如果连续执行两次lock(),就会产生系统无限等待的状态
// 解决方法就是在两次中间执行一次unLock()方法
l.lock();
System.out.println("Lock!");
l.lock();
// l.unlock(); //注释了
System.out.println("Lock!");
} catch (InterruptedException e) {
e.printStackTrace();
}
else
l.unlock();
} }
}

输出:

synchronized lock!
Lock!
synchronized wait()!
synchronized unlock!

在一个synchronized方法/块的内部调用本类的其他synchronized方法/块时,是永远可以获得锁的。

package com.text;

public class Lock2{
private boolean isLocked = false; public static void main(String[] args) {
Lock2 lock = new Lock2(); MyRunnable r1 = new MyRunnable(lock, true);
MyRunnable r2 = new MyRunnable(lock, false);
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);
t1.start(); // t2.start();
}
public synchronized void lock()
throws InterruptedException{
while(isLocked){
System.out.println("synchronized wait()!");
wait();
}
isLocked = true;
System.out.println("synchronized lock!");
} public synchronized void unlock(){
isLocked = false;
notify();
System.out.println("synchronized unlock!");
} static class MyRunnable implements Runnable{
Lock2 l = null;
boolean flag = false;
public MyRunnable(Lock2 l, boolean flag) {
this.l = l;
this.flag = flag;
}
@Override
public void run() {
if(flag == true)
try {
// 如果连续执行两次lock(),就会产生系统无限等待的状态
// 解决方法就是在两次中间执行一次unLock()方法
l.lock();
System.out.println("Lock!");
l.lock();
l.unlock(); //取消注释了
System.out.println("Lock!");
} catch (InterruptedException e) {
e.printStackTrace();
}
else
l.unlock();
} }
}

输出:

synchronized lock!
Lock!
synchronized wait()!

因为连续两个lock方法,导致在第二次时形成死锁,第三次的unlock由于不是在synchronized方法/块内调用的,所以无法获取锁,

Android 死锁和重入锁的更多相关文章

  1. Synchronized可重入锁通俗易懂的简单分析

    可重入锁概念: 当一个线程得到一个对象锁后,再次请求此对象时时可以再次得到该对象的锁的,这也证明synchronized方法/块的内部调用本类的其他synchronized方法/块时,时永远可以得到锁 ...

  2. Java 多线程 -- 理解锁:手动实现可重入锁和不可重入锁

    JDK提供的大多数内置锁都是可重入的,也就是 说,如果某个线程试图获取一个已经由它自己持有的锁时,那么这个请求会立 刻成功,并且会将这个锁的计数值加1,而当线程退出同步代码块时,计数器 将会递减,当计 ...

  3. Java可重入锁如何避免死锁

    本文由https://bbs.csdn.net/topics/390939500和https://zhidao.baidu.com/question/1946051090515119908.html启 ...

  4. 举例讲解Python中的死锁、可重入锁和互斥锁

    举例讲解Python中的死锁.可重入锁和互斥锁 一.死锁 简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况. 1.迭代死锁 该情况是一 ...

  5. JUC(11)各种锁的理解(公平锁、可重入锁、自旋锁、死锁)

    文章目录 1.公平锁.非公平锁 2.可重入锁 3.自旋锁 4.死锁 1.公平锁.非公平锁 公平锁:非常公平.不能插队.必须先来后到 非公平锁:非常不公平.可以插队.(默认非公平) 可以修改为公平锁 2 ...

  6. JAVA锁机制-可重入锁,可中断锁,公平锁,读写锁,自旋锁,

    如果需要查看具体的synchronized和lock的实现原理,请参考:解决多线程安全问题-无非两个方法synchronized和lock 具体原理(百度) 在并发编程中,经常遇到多个线程访问同一个 ...

  7. java ReentrantLock可重入锁功能

    1.可重入锁是可以中断的,如果发生了死锁,可以中断程序 //如下程序出现死锁,不去kill jvm无法解决死锁 public class Uninterruptible { public static ...

  8. 可重入锁 & 自旋锁 & Java里的AtomicReference和CAS操作 & Linux mutex不可重入

    之前还是写过蛮多的关于锁的文章的: http://www.cnblogs.com/charlesblc/p/5994162.html <[转载]Java中的锁机制 synchronized &a ...

  9. Java并发编程-可重入锁

    可重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍可以获取该锁而不受影响.在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁. publ ...

随机推荐

  1. mysql每秒最多能插入多少条数据 ? 死磕性能压测

    前段时间搞优化,最后瓶颈发现都在数据库单点上. 问DBA,给我的写入答案是在1W(机械硬盘)左右. 联想起前几天infoQ上一篇文章说他们最好的硬件写入速度在2W后也无法提高(SSD硬盘) 但这东西感 ...

  2. shell注释

    sh里没有多行注释,只能每一行加一个#号.只能像这样: #-------------------------------------------- # 这是一个自动打ipa的脚本,基于webfrogs ...

  3. NuGet镜像上线试运行

    为解决国内访问NuGet服务器速度不稳定的问题,我们用阿里云服务器搭建了一个NuGet镜像,目前已上线试运行. 使用NuGet镜像源的方法如下: 1)NuGet镜像源地址:https://nuget. ...

  4. Laravel Composer and ServiceProvider

    Composer and: 创建自定义类库时,按命名空间把文件夹结构组织好 composer.json>autoload>classmap>psr-4 composer dump-a ...

  5. 实现代理设置proxy

    用户在哪些情况下是需要设置网络代理呢? 1. 内网上不了外网,需要连接能上外网的内网电脑做代理,就能上外网:多个电脑共享上外网,就要用代理: 2.有些网页被封,通过国外的代理就能看到这被封的网站:3. ...

  6. MAC下 mysql不能插入中文和中文乱码的问题总结

    MAC下 mysql不能插入中文和中文乱码的问题总结 前言 本文中所提到的问题解决方案,都是基于mac环境下的,但其他环境,比如windows应该也适用. 问题描述 本文解决下边两个问题: 往mysq ...

  7. npm 使用小结

    本文内容基于 npm 4.0.5 概述 npm (node package manager),即 node 包管理器.这里的 node 包就是指各种 javascript 库. npm 是随同 Nod ...

  8. StatePattern(状态模式)

    /** * 状态模式 * @author TMAC-J * 状态模式和策略模式很像,其实仔细研究发现完全不一样 * 策略模式各策略之间没有任何关系,独立的 * 状态模式各状态之间接口方法都是一样的 * ...

  9. 通过sails和阿里大于实现短信验证

    通过sails与阿里大于来实现注册短信验证码的发送,逻辑图如下 1.用户在客户端发送手机号给服务器,服务器接收到手机号,生成对应时间戳,随机四位数验证码 2.服务器将电话号码和验证码告诉阿里大于服务器 ...

  10. arcgis api for js入门开发系列八聚合效果(含源代码)

    上一篇实现了demo的图层控制模块,本篇新增聚合效果,截图如下(源代码见文章底部): 聚合效果实现的思路如下: 1.map.html引用聚合包,项目已经包含进来了的聚合文件夹: <script ...