2016.1.26

法一:直接根据定义式,求乘法逆元即可

法二:借助关于n!mod p,那么根据C(n,k)的定义式并结合乘法逆元即可求解。

法三:借助卢卡斯定理求解

特别注意:在C(n,k)模p等于0的情况下,上述方法均不奏效,所以需要特判。

特判方法举例:如在采取法一时,分子中因子p的个数为e1,分母中因子p的个数为e2,那么e1=e2时模p不得0,可继续进行;若e1>e2,则模p为0,直接返回0.

如在采取法三时,有这样一句话:C(a,b)模p不等于0的充要条件是a在p进制下的每一位都不小于b在p进制下对应的位,C(a,b)模p等于0的充要条件是a在p进制下至少有一位小于b在p进制下对应的位

看不懂没关系,看这道题就明白了:聪聪考试(主要是卢卡斯定理那部分)

对于C(n,k)取模的更多相关文章

  1. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  2. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  3. POJ 3233-Matrix Power Series( S = A + A^2 + A^3 + … + A^k 矩阵快速幂取模)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 20309   Accepted:  ...

  4. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. hdu2302(枚举,大数取模)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2303 题意:给出两个数k, l(4<= k <= 1e100, 2<=l<=1 ...

  7. poj2305-Basic remains(进制转换 + 大整数取模)

    进制转换 + 大整数取模一,题意: 在b进制下,求p%m,再装换成b进制输出. 其中p为b进制大数1000位以内,m为b进制数9位以内二,思路: 1,以字符串的形式输入p,m; 2,转换:字符串-&g ...

  8. 【Gym 100947E】Qwerty78 Trip(组合数取模/费马小定理)

    从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模.可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为 C((m−1)+(n−1),n−1) 再考虑其 ...

  9. hoj3152-Dice 等比数列求和取模

    http://acm.hit.edu.cn/hoj/problem/view?id=3152 Dice My Tags (Edit) Source : Time limit : sec Memory ...

随机推荐

  1. RadioButtonList的使用

    前台绑定: <asp:RadioButtonList ID="hlBatchYuJi" runat="server" RepeatColumns=&quo ...

  2. [NOIP2015] 斗地主(搜索)

    题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3<4< ...

  3. 编程:递归编程解决汉诺塔问题(用java实现)

    Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; publ ...

  4. Silverlight RadChart :创建十字定位&圈选

    //图像加载 void Chart_Loaded(object sender, RoutedEventArgs e) { var plotAreaPanel = this.radChart.Defau ...

  5. org.springframework.jdbc.CannotGetJdbcConnectionException: Could not get JDBC Connection 原因

    org.springframework.jdbc.CannotGetJdbcConnectionException: Could not get JDBC Connection 可能出现的原因     ...

  6. glusterfs 中的字典查询

    glusterfs文件系统是一个分布式的文件系统,但是与很多分布式文件系统不一样,它没有元数服务器,听说swift上也是应用了这个技术的.glusterfs中每个xlator的配置信息都是用dict进 ...

  7. OpenGL变换

    概述 OpenGL变换矩阵 实例:GL_MODELVIEW矩阵 实例:GL_PROJECTION矩阵 概述 OpenGL管线中,在光栅化操作之前,包括顶点位置与法线向量的几何数据经顶点操作与图元装配操 ...

  8. python海龟图制作

    海龟画图很好看,先上图形: 依据代码注释随意打印出来就行: #!/usr/bin/python3.4 # -*- coding: utf-8 -*- import turtle # 拿起一支笔 t = ...

  9. selenium浏览器操作

    在元素定位中xpath使用的还算比较多,介绍一下常见的firfox和chrome浏览器插件安装 一.浏览器定位工具安装 1.firfox firfox比较简单,主要浏览器自带的定位功能也比较强大国内也 ...

  10. MSER算法介绍

    MSER代码编译: matlabroot %如果是VS2010则解压VS2010MEX支持文件到MATLAB根目录 unzip('E:\Software\develop Tools\VS2010MEX ...