【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)
http://www.lydsy.com/JudgeOnline/problem.php?id=1677
完全背包很容易想到,将1,2,4...等作为物品容量即可。
然后这题还有一个递推式
f[i]==f[i-1], 当i%2==1
f[i]==f[i-1]+f[i/2], 当i%2==0
当i为奇数时,我们可以看为i-1加上一个1的情况,那么只有f[i-1]中情况(因为每种情况只是多了一个1)
当i为偶数时,分为2种情况,含有1和不含有1,当含有1时,那么情况就是f[i-1],当不含有1时,情况就是f[i/2],因为不含有1他们都可以被2整除
背包:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005, MD=1000000000;
int f[N], n; int main() {
read(n);
f[0]=1;
for1(i, 0, 30) {
int s=1<<i;
if(s>n) break;
for(int j=s; j<=n; ++j)
{ f[j]+=f[j-s]; f[j]%=MD; }
}
print(f[n]);
return 0;
}
递推:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005;
int f[N], n; int main() {
read(n);
f[1]=1;
for1(i, 2, n) {
f[i]=f[i-1];
if(!(i&1)) f[i]+=f[i>>1];
f[i]%=1000000000;
}
print(f[n]);
return 0;
}
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
给出一个N(1≤N≤10^6),使用一些2的若干次幂的数相加来求之.问有多少种方法
Input
一个整数N.
Output
方法数.这个数可能很大,请输出其在十进制下的最后9位.
Sample Input
Sample Output
有以下六种方式
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
HINT
Source
【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)的更多相关文章
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和( dp )
完全背包.. --------------------------------------------------------------------------------------- #incl ...
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和
题目 1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 617 Solved: 344[Su ...
- BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...
- bzoj 1677: [Usaco2005 Jan]Sumsets 求和【dp】
设f[i]为i的方案数,f[1]=1,考虑转移,如果是奇数,那么就是f[i]=f[i-1]因为这1一定要加:否则f[i]=f[i-1]+f[i>>1],就是上一位+1或者i/2位所有因子乘 ...
- 1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 626 Solved: 348[Submi ...
- BZOJ1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 570 Solved: 310[Submi ...
- 【BZOJ1677】[Usaco2005 Jan]Sumsets 求和 递推
... #include <iostream> using namespace std; ]; int n,i; int main() { cin>>n; f[]=; ;i&l ...
- [Usaco2005 Jan]Sumsets 求和
Description Farmer John commanded his cows to search for different sets of numbers that sum to a giv ...
- BZOJ 1679: [Usaco2005 Jan]Moo Volume 牛的呼声( )
一开始直接 O( n² ) 暴力..结果就 A 了... USACO 数据是有多弱 = = 先sort , 然后自己再YY一下就能想出来...具体看code --------------------- ...
随机推荐
- OPENERP 构建动态视图
来自:http://shine-it.net/index.php/topic,16142.0.html 在openerp展示界面通常是通过定义class的view(xml文件)来实现的. 有时这种方法 ...
- 关于ibatis的实体类部分属性无法映射
今天在编码中不小心就遇到了一个ibatis初学者偶尔会遇到的问题. 先来看这张图中的DictionPo的部分属性赋值都为空.其实,数据库中是有数据的. 再来看看mapper的写法 上面那个对象查询语句 ...
- linux(Centos)下编译安装gcc4.8.2
欢迎转载.转载请注明原文地址:http://blog.csdn.net/majianfei1023/article/details/46811159 近期要用到c++ 11,所以没办法仅仅得把那台ce ...
- MySQL-LAST_INSERT_ID();使用注意事项
第一.查询和插入所使用的Connection对象必须是同一个才可以,否则返回值是不可预料的. mysql> SELECT LAST_INSERT_ID(); -> 100 使 用这函数向一 ...
- EL表达式中fn函数
JSTL 使用表达式来简化页面的代码,这对一些标准的方法,例如bean的getter/setter方法,请求参数或者context以及 session中的数据的访问非常方便,但是我们在实际应用中经常需 ...
- 工作总结 @Html 辅助方法 为 生成的 标签设置元素属性 htmlAttributes 一个对象,其中包含要为该元素设置的 HTML 特性。
@Html.RadioButtonFor(m => m.IsJianChe, true, new { @style = "width: 18px; height: 18px;" ...
- IOS性能调优系列:使用Allocation动态分析内存使用情况
硬广:<IOS性能调优系列>第三篇,持续更新,欢迎关注. <IOS性能调优系列:Analyze静态分析>介绍了使用静态分析方法查找IOS内存泄漏的方法,<IOS性能调优系 ...
- Ubuntu快捷键截图
gnome-screenshot #全屏截图 gnome-screenshot -a #区域截图 在设置-键盘-快捷键-自定义快捷键中添加这个指令,创建快捷键. 注:我本人是在VBox里装的Ubunt ...
- sysbench的安装详解
sysbench是一个压力测试工具.可以用它来测试cpu.mem.disk.thread.mysql.postgr.oracle:然而作为一个mysql dba 我当然是用它来压测mysql啦! 一. ...
- node.js 操作excel 表格与XML文件常用的npm
在日常工作中会经常用到把一些excel表格文件转化为json,xml,js等格式的文件,下面就是我在日常中用到的这些npm. 1.node-xlsx: node-xlsx可以把excel文件转化为上面 ...