【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)
http://www.lydsy.com/JudgeOnline/problem.php?id=1677
完全背包很容易想到,将1,2,4...等作为物品容量即可。
然后这题还有一个递推式
f[i]==f[i-1], 当i%2==1
f[i]==f[i-1]+f[i/2], 当i%2==0
当i为奇数时,我们可以看为i-1加上一个1的情况,那么只有f[i-1]中情况(因为每种情况只是多了一个1)
当i为偶数时,分为2种情况,含有1和不含有1,当含有1时,那么情况就是f[i-1],当不含有1时,情况就是f[i/2],因为不含有1他们都可以被2整除
背包:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005, MD=1000000000;
int f[N], n; int main() {
read(n);
f[0]=1;
for1(i, 0, 30) {
int s=1<<i;
if(s>n) break;
for(int j=s; j<=n; ++j)
{ f[j]+=f[j-s]; f[j]%=MD; }
}
print(f[n]);
return 0;
}
递推:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005;
int f[N], n; int main() {
read(n);
f[1]=1;
for1(i, 2, n) {
f[i]=f[i-1];
if(!(i&1)) f[i]+=f[i>>1];
f[i]%=1000000000;
}
print(f[n]);
return 0;
}
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
给出一个N(1≤N≤10^6),使用一些2的若干次幂的数相加来求之.问有多少种方法
Input
一个整数N.
Output
方法数.这个数可能很大,请输出其在十进制下的最后9位.
Sample Input
Sample Output
有以下六种方式
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
HINT
Source
【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)的更多相关文章
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和( dp )
完全背包.. --------------------------------------------------------------------------------------- #incl ...
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和
题目 1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 617 Solved: 344[Su ...
- BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...
- bzoj 1677: [Usaco2005 Jan]Sumsets 求和【dp】
设f[i]为i的方案数,f[1]=1,考虑转移,如果是奇数,那么就是f[i]=f[i-1]因为这1一定要加:否则f[i]=f[i-1]+f[i>>1],就是上一位+1或者i/2位所有因子乘 ...
- 1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 626 Solved: 348[Submi ...
- BZOJ1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 570 Solved: 310[Submi ...
- 【BZOJ1677】[Usaco2005 Jan]Sumsets 求和 递推
... #include <iostream> using namespace std; ]; int n,i; int main() { cin>>n; f[]=; ;i&l ...
- [Usaco2005 Jan]Sumsets 求和
Description Farmer John commanded his cows to search for different sets of numbers that sum to a giv ...
- BZOJ 1679: [Usaco2005 Jan]Moo Volume 牛的呼声( )
一开始直接 O( n² ) 暴力..结果就 A 了... USACO 数据是有多弱 = = 先sort , 然后自己再YY一下就能想出来...具体看code --------------------- ...
随机推荐
- Java Tread多线程(1)实现Runnable接口
作者 : 卿笃军 原文地址:http://blog.csdn.net/qingdujun/article/details/39347245 本文演示,Tread多线程实现Runnable接口,以及简单 ...
- 【Linux】centos和ubuntu下php5安装redis2.24扩展
1.服务器先安装redis-server,这是毋庸置疑的!!! 2.服务器开启redis-server,配置相关参数 3.配置好redis服务器后,再安装php的redis扩展phpredis. 一. ...
- js闭包的应用
<ul id="ul1"> <li style="border:1px solid red;">1</li> <li ...
- UniCode 下 CString 转 char* 的方法
今天进行文件操作时,将CString的GetBuffer()后直接倒到char数组后写入文件发现 每个字符与字符之间都有一个空格存在,而且有内容丢失.原来CString类对象GetBuffer(),后 ...
- 手动集成OWIN
1.Install-Package Microsoft.AspNet.Identity.Owin Owin的很大亮点之一就是它可以让我们的ASP.NET 网站摆脱IIS,但是毕竟大多数的ASP.NET ...
- 使用 log4j 2记录日志
log4j2使用方法还是很简单的 1 需要使用的jar包有两个, 1)log4j-api-2.8.2.jar 2)log4j-core-2.8.2.jar 2 产生Logger 对象非常的简单,使用 ...
- sql server数据库查询超时报错
报错信息如下: 链接服务器"DBJointFrame"的 OLE DB 访问接口 "SQLNCLI10" 返回了消息 "查询超时已过期". ...
- setTimeout 的用法
只有第二种和第三种是正确的用法. setTimeout(函数名, 延迟) setTimeout(show(), 1000); show() 是函数运行,这种传递方式真正传进去的是 show 函数的返回 ...
- Atitit.js javascript异常处理机制与java异常的转换 多重catc hDWR 环境 .js exception process Vob7
Atitit.js javascript异常处理机制与java异常的转换 多重catc hDWR 环境 .js exception processVob7 1. 1. javascript异常处理机制 ...
- 【Tips】【UE】总结自己常用的UltraEdit使用技巧
如果您问我每天都要打开的软件是什么,那毫无疑问是UltraEdit!作为一位DBA,每天都要写各种脚本,尤其是在对具有超多行行的大文件进行精心编辑时,没有一个好的文本编辑器是不成的.掐指一算,哇塞,自 ...