题意:动态逆序对,共m次删除操作,求每次操作前的逆序对个数

删除操作转换为添加操作,首先对时间a进行简单排序

然后用cdq分治处理b维,树状数组处理c维

此时需要求的是对于某有序组\((a,b,c)\)

求多少个\((a_i,b_i,c_i)\)满足

\(a_i<a,b_i<b,c_i>c\)

\(a_i<a,b_i>b,c_i<c\)

为了方便起见可把某一维度的空间倒转,把编号\(b_k\)或\(c_k\)换成\(n-b_k+1\)或\(n-c_k+1\)

那么两次cdq分治可以表示为求

\(a_i<a,b_i<b,c_i<c\)

以及

\(a_i<a,b_i<b,c_i<c\)

注意一下倒序操作的编号

#include<bits/stdc++.h>
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define rrep(i,j,k) for(int i=j;i>=k;i--)
#define erep(i,u) for(int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
using namespace std;
const int MAXN = 1e5+11;
const int MOD = 1e9+7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct QUERY{
int a,b,c;
bool operator < (const QUERY &rhs) const{
if(b!=rhs.b) return b<rhs.b;
return c<rhs.c;
}
}Q[MAXN],tmp[MAXN];
bool cmp(QUERY a,QUERY b){
if(a.a!=b.a) return a.a<b.a;
if(a.b!=b.b) return a.b<b.b;
return a.c<b.c;
}
int S,W,n,m;
ll ans[MAXN];
struct FT{
ll ft[MAXN];
inline int lowbit(int x){return x&-x;}
void update(int k,int v){
while(k<MAXN){
ft[k]+=v;
k+=lowbit(k);
}
}
int query(int k){
int res=0;
while(k>0){
res+=ft[k];
k-=lowbit(k);
}
return res;
}
void clear(int k){
while(k<MAXN){
if(ft[k]){
ft[k]=0;
}else{
break;
}
k+=lowbit(k);
}
}
void init(){
memset(ft,0,sizeof ft);
}
}ft;
void solve(int l,int r){
if(l==r) return;
int mid=l+r>>1;
solve(l,mid);
solve(mid+1,r);
int p=l,q=mid+1,cnt=0;
while(p<=mid&&q<=r){
if(Q[p].b<Q[q].b){
ft.update(Q[p].c,1);
tmp[++cnt]=Q[p++];
}else{
ans[Q[q].a]+=ft.query(Q[q].c);
tmp[++cnt]=Q[q++];
}
}
while(p<=mid) tmp[++cnt]=Q[p++];
while(q<=r){
ans[Q[q].a]+=ft.query(Q[q].c);
tmp[++cnt]=Q[q++];
}
rep(i,l,p-1) ft.clear(Q[i].c);
rep(i,1,cnt) Q[i+l-1]=tmp[i];
}
int ord[MAXN];
int main(){
while(cin>>n>>m){
int cnt=0,t=n;
rep(i,1,n){
int x=read();
Q[++cnt].a=0;
Q[cnt].b=i;
Q[cnt].c=x;
}
memset(ord,0,sizeof ord);
rep(i,1,m){
int x=read();
ord[x]=i;
}
int tt=m;
rep(i,1,n) if(ord[i]==0) ord[i]=++tt;
rep(i,1,n) Q[i].a=n-ord[Q[i].c]+1; //转换为添加时间
rep(i,1,n) Q[i].c=n-Q[i].c+1;
sort(Q+1,Q+1+cnt,cmp);
ft.init();
solve(1,cnt);
rep(i,1,n){
Q[i].c=n-Q[i].c+1;
Q[i].b=n-Q[i].b+1;
}
sort(Q+1,Q+1+cnt,cmp);
ft.init();
solve(1,cnt);
//1...n-m为初态 n-m+1...n为删除过程
rep(i,1,n) ans[i]+=ans[i-1];
rrep(i,n,n-m+1) println(ans[i]);
}
return 0;
}

BZOJ - 3295 三维偏序 空间转换的更多相关文章

  1. BZOJ - 3263 三维偏序

    题意:定义元素为有序组(a,b,c),若存在x组(a_i,b_i,c_i)分别小于等于(a,b,c),则该元素的等级为x,求[0,n-1]等级的个数 cdq分治练手题,对a简单排序并去重,对b进行分治 ...

  2. BZOJ 3295:[Cqoi2011]动态逆序对(三维偏序 CDQ分治+树状数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3295 题意:简单明了. 思路:终于好像有点明白CDQ分治处理三维偏序了.把删除操作看作是插入操作,那 ...

  3. BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)

    题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...

  4. Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治

    Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治 题面 \(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\).定义一个元素的 ...

  5. BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  6. [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解

    原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...

  7. BZOJ 2716/2648 SJY摆棋子 (三维偏序CDQ+树状数组)

    题目大意: 洛谷传送门 这明明是一道KD-Tree,CDQ分治是TLE的做法 化简式子,$|x1-x2|-|y1-y2|=(x1+y1)-(x2+y2)$ 而$CDQ$分治只能解决$x1 \leq x ...

  8. BZOJ 1176/2683 Mokia (三维偏序CDQ+树状数组)

    题目大意: 洛谷传送门 三维偏序裸题.. 每次操作都看成一个三元组$<x,y,t>$,表示$x,y$坐标和操作时间$t $ 询问操作拆成$4$个容斥 接下来就是$CDQ$了,外层按t排序, ...

  9. BZOJ 2244 [SDOI2011]拦截导弹 (三维偏序CDQ+线段树)

    题目大意: 洛谷传送门 不愧为SDOI的duliu题 第一问?二元组的最长不上升子序列长度?裸的三维偏序问题,直接上$CDQ$ 由于是不上升,需要查询某一范围的最大值,并不是前缀最大值,建议用线段树实 ...

随机推荐

  1. Python爬虫实战六之抓取爱问知识人问题并保存至数据库

    大家好,本次为大家带来的是抓取爱问知识人的问题并将问题和答案保存到数据库的方法,涉及的内容包括: Urllib的用法及异常处理 Beautiful Soup的简单应用 MySQLdb的基础用法 正则表 ...

  2. iframe是怎么跳转的

    在main.jsp中 <iframe frameborder="0" marginheight="0" marginwidth="0" ...

  3. 白话浅说TCP/UDP面向连接,面向无连接的区别

    TCP是面向连接的UDP是面向无连接的就是这种关系了 TCP(Transmission Control Protocol,传输控制协议) UDP(User Datagram Protocol,用户数据 ...

  4. 代码审查清单 Code Review

    代码审查清单 常规项 代码能够工作么?它有没有实现预期的功能,逻辑是否正确等. 所有的代码是否简单易懂? 代码符合你所遵循的编程规范么?这通常包括大括号的位置,变量名和函数名,行的长度,缩进,格式和注 ...

  5. C# 订单号的生成

    /**        * 根据当前系统时间加随机序列来生成订单号         * @return 订单号        */        public static string Generat ...

  6. up7.1-asp.net-本地测试教程

    1.1. ASP.NET 框架:.NET Framework 4.5 依赖库:csredis,Newtonsoft.Json   安装redis 下载 redis-x64:http://pan.bai ...

  7. SurfaceView实时绘图,视频流

  8. 只是误以为导入了maven依赖

    背景: 之前用Spring Boot 开发了一个小项目,考虑将代码迁到Git服务器,由于之前没用过Git,在将代码正式签入Git服务器前, 我想先签入一个最简单的Spring Boot程序代码作为试验 ...

  9. Android 增量更新研究

    Android 增量更新实例(Smart App Updates) http://blog.csdn.net/duguang77/article/details/17676797 Android AP ...

  10. OpenGL学习脚印:背面剔除(Face Culling)

    写在前面 在绘制封闭类型的几何对象时,开启背面剔除功能能够提高渲染性能.本节简要介绍下背面剔除,示例程序可以在我的github下载. 什么是背面剔除 当我们观察场景中对象时,一般只能以一定角度来观察, ...