[国家集训队] Crash 的文明世界(第二类斯特林数)
题目
前置
斯特林数\(\Longrightarrow\)斯特林数及反演总结
做法
ans_x&=\sum\limits_{i=1}^ndis(i,x)^k\\
&=\sum\limits_{i=1}^n\sum\limits_{j=0}^k\begin{Bmatrix}k\\j\end{Bmatrix}C_{dis(i,x)}^jj!\\
&=\sum\limits_{j=0}^k\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits_{i=1}^nC_{dis(i,x)}^j\\
&=\sum\limits_{j=0}^k\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits_{i=1}^n(C_{dis(i,x)-1}^j+C_{dis(i,x)-1}^{j-1})
\end{aligned}\]
\(f[x][j]\)表示\(x\)子树内,关于\(x\):\(C_{dis(i,x)}^j\)的答案
显然有\(f[x][j]=\sum\limits_{son}f[son][j]+f[son][j-1]\)
当这仅仅对于根有效,所以再做一遍换根\(dp\)
Code
#include<bits/stdc++.h>
typedef int LL;
const LL maxn=5e4+9,mod=10007,maxm=209;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}
return x*f;
}
struct node{
LL to,nxt;
}dis[maxn<<1];
LL n,num,K;
LL head[maxn],dp1[maxn][maxm],dp2[maxn][maxm],strl[maxm][maxm],tmp[maxm],fac[maxm];
inline void Add(LL u,LL v){
dis[++num]=(node){v,head[u]}; head[u]=num;
}
void Dfs1(LL u,LL f){
dp1[u][0]=1;
for(LL i=head[u];i;i=dis[i].nxt){
LL v(dis[i].to);
if(v==f) continue;
Dfs1(v,u);
for(LL j=1;j<=K;++j) dp1[u][j]=(dp1[u][j]+dp1[v][j]+dp1[v][j-1])%mod;
dp1[u][0]=(dp1[u][0]+dp1[v][0])%mod;
}
}
void Dfs2(LL u,LL f){
for(LL i=0;i<=K;++i) dp2[u][i]=dp1[u][i];
if(f){
for(LL i=1;i<=K;++i) tmp[i]=(dp2[f][i]-dp1[u][i]+mod-dp1[u][i-1]+mod)%mod;
tmp[0]=(dp2[f][0]-dp1[u][0]+mod)%mod;
for(LL i=1;i<=K;++i) dp2[u][i]=(dp2[u][i]+tmp[i]+tmp[i-1])%mod;
dp2[u][0]=(dp2[u][0]+tmp[0])%mod;
}
for(LL i=head[u];i;i=dis[i].nxt){
LL v(dis[i].to);
if(v==f) continue;
Dfs2(v,u);
}
}
int main(){
n=Read(); K=Read();
strl[0][0]=strl[1][1]=1;
for(LL i=2;i<=K;++i)
for(LL j=1;j<=i;++j)
strl[i][j]=(strl[i-1][j-1]+j*strl[i-1][j])%mod;
fac[0]=fac[1]=1;
for(LL i=2;i<=K;++i) fac[i]=fac[i-1]*i%mod;
for(LL i=1;i<n;++i){
LL u(Read()),v(Read());
Add(u,v); Add(v,u);
}
Dfs1(1,0); Dfs2(1,0);
for(LL i=1;i<=n;++i){
LL ret(0);
for(LL j=0;j<=K;++j) ret=(ret+1ll*strl[K][j]*fac[j]*dp2[i][j])%mod;
printf("%d\n",ret);
}
return 0;
}
[国家集训队] Crash 的文明世界(第二类斯特林数)的更多相关文章
- BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp
这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- 解题:国家集训队 Crash 的文明世界
题面 这种套着高次幂的统计问题一般都要用到第二类斯特林数和自然数幂的关系:$a^k=\sum\limits_{i=0}^{k}S_k^iC_a^i*i!$ 那么对于每个点$x$有: $ans_x=\s ...
- 【[国家集训队] Crash 的文明世界】
先写一个五十分的思路吧 首先这道题有一个弱化版 [POI2008]STA-Station 相当于\(k=1\),于是就是一个非常简单的树形\(dp\)的\(up\ \ and\ \ down\)思想 ...
- 洛谷 P4827 [国家集训队] Crash 的文明世界
题目描述 给你一棵 n 个点的树,对于树上的每个节点 i,求 \(\sum_{j=1}^ndis(i,j)^k\).其中 \(dis(i,j)\) 为两点在树上的距离. 输入格式 第一行两个整 ...
- [题解] LuoguP4827 [国家集训队] Crash 的文明世界
传送门 这个题......我谔谔 首先可以考虑换根\(dp\),但到后来发现二项式定理展开过后需要维护\(k\)个值,同时每个值也要\(O(k)\)的时间按二项式定理算 当然fft优化过后就是k lo ...
- [国家集训队] Crash 的文明世界
不错的树形$ DP$的题 可为什么我自带大常数啊$ cry$ 链接:here 题意:给定一棵$ n$个节点的树,边权为$ 1$,对于每个点$ x$求$ \sum\limits_{i=1}^n dist ...
- [国家集训队] Crash的文明世界
Description 给定一棵 \(n\) 个点的树,对于每个点 \(i\) 求 \(S(i)=\sum\limits_{j=1}^n \operatorname{dist(i,j)}^k\) .\ ...
随机推荐
- npm install 不自动生成 package-lock.json文件
package-lock.json这个文件的作用就不详细说明了 有需要的可以参考 :https://www.cnblogs.com/cangqinglang/p/8336754.html 网上都说 n ...
- 蓝桥杯 第三届C/C++预赛真题(8) 密码发生器(水题)
在对银行账户等重要权限设置密码的时候,我们常常遇到这样的烦恼:如果为了好记用生日吧,容易被破解,不安全:如果设置不好记的密码,又担心自己也会忘记:如果写在纸上,担心纸张被别人发现或弄丢了... 这个程 ...
- 简易新闻网站NewsWeb-网页抓取
本文转载自姚虎才子 今天做项目时用到java抓取网页内容,本以为很简单的一件事但是还是让我蛋疼了一会,网上资料一大堆但是都是通过url抓取网页内容,但是我要的是读取本地的html页面内容的方法,网上找 ...
- vue学习之旅:入门
首先利用脚手架vue cli搭建vue环境 引入 vue <script src="https://unpkg.com/vue/dist/vue.js"></sc ...
- 下载苹果APP历史版本
1.参考教程: iOS 下载旧版本 app 或者已下架 app 方法 - 简书 https://www.jianshu.com/p/33dc8bfd4134 2.步骤总结: 下载旧版带 app 管理的 ...
- iOS论App推送方案
1.APNS介绍(原生推送实现原理) 在iOS平台上,大部分应用是不允许在后台运行并连接网络的.在应用没有被运行的时候,只能通过 Apple Push Notification Service (AP ...
- "AppServer"--->UDP--->"LogWriteServer"
w 是否应该将日志的“写”独立至局域网的一台或一群专门服务于“写日志”的服务器?这样让“app服务器”专职地处理用户的请求,而不必因为“写日志甚至异步分析日志”来降低用户体验? Spencer老师 其 ...
- Kafka — 高吞吐量的分布式发布订阅消息系统【转】
1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有哪两个条件 ...
- 命令行操作flask
Flask-Script 先安装pip3 install Flask-Script from sansa import create_app from flask_script import Mana ...
- 以K个为一组反转单链表,最后不足K个节点的部分也反转
package StackMin.ReverseList_offer16; public class ReverseKgroup_extend_offer16 { /** * 分组反转单链表,最后不足 ...