Sol

这做法我是想不到\(TAT\)

每个筐子拆成三个相互连边

球向三个筐子连边

然后跑一般图最大匹配

这三个筐子间最多有一个匹配

那么显然每个球一定会放在一个筐子里,一定有一个匹配

如果筐子间有匹配,则有一个半空的筐子,因为它一定只匹配了小于等于\(1\)个球

答案为匹配数\(-n\)

使答案最大即匹配数最大

上带花树就好了

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1005);
const int __(2e5 + 5);
typedef int Arr[_]; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} Arr first, match, fa, vis, tim, pre;
int n, m, cnt, idx, ans, E, t1, t2, t3;
queue <int> Q;
struct Edge{
int to, next;
} edge[__]; IL void Add(RG int u, RG int v){
edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
edge[cnt] = (Edge){u, first[v]}, first[v] = cnt++;
} IL int Find(RG int x){
return x == fa[x] ? x : fa[x] = Find(fa[x]);
} IL int LCA(RG int x, RG int y){
++idx, x = Find(x), y = Find(y);
while(tim[x] != idx){
tim[x] = idx;
x = Find(pre[match[x]]);
if(y) swap(x, y);
}
return x;
} IL void Blossom(RG int x, RG int y, RG int p){
while(Find(x) != p){
pre[x] = y, y = match[x];
if(vis[y] == 2) vis[y] = 1, Q.push(y);
if(Find(x) == x) fa[x] = p;
if(Find(y) == y) fa[y] = p;
x = pre[y];
}
} IL int Aug(RG int S){
for(RG int i = 1; i <= t3; ++i) vis[i] = pre[i] = 0, fa[i] = i;
while(!Q.empty()) Q.pop();
Q.push(S), vis[S] = 1;
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
if(Find(v) == Find(u) || vis[v] == 2) continue;
if(!vis[v]){
vis[v] = 2, pre[v] = u;
if(!match[v]){
for(RG int x = v, lst; x; x = lst)
lst = match[pre[x]], match[pre[x]] = x, match[x] = pre[x];
return 1;
}
vis[match[v]] = 1, Q.push(match[v]);
}
else{
RG int p = LCA(u, v);
Blossom(u, v, p);
Blossom(v, u, p);
}
}
}
return 0;
} int main(RG int argc, RG char *argv[]){
for(RG int T = Input(); T; --T){
n = Input(), m = Input(), E = Input();
t1 = n + m, t2 = t1 + m, t3 = t2 + m;
ans = cnt = idx = 0;
for(RG int i = 1; i <= t3; ++i) first[i] = -1, match[i] = 0, tim[i] = 0;
for(RG int i = 1; i <= m; ++i)
Add(n + i, t1 + i), Add(t1 + i, t2 + i), Add(n + i, t2 + i);
for(RG int i = 1, u, v; i <= E; ++i){
u = Input(), v = Input();
Add(u, n + v), Add(u, t1 + v), Add(u, t2 + v);
}
for(RG int i = 1; i <= t3; ++i) if(!match[i]) ans += Aug(i);
printf("%d\n", ans - n);
}
return 0;
}

[WC2016]挑战NPC的更多相关文章

  1. [WC2016]挑战NPC(一般图最大匹配)

    [WC2016]挑战NPC(一般图最大匹配) Luogu 题解时间 思路十分有趣. 考虑一个筐只有不多于一个球才有1的贡献代表什么. 很明显等效于有至少两个位置没有被匹配时有1的贡献. 进而可以构造如 ...

  2. [BZOJ]4405: [wc2016]挑战NPC(带花树)

    带花树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  3. [bzoj4405][wc2016]挑战NPC

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个球,用整数1到n编号.还有m个筐子,用整数1到m编号. ...

  4. BZOJ 4405 [wc2016]挑战NPC 带花树 一般图最大匹配

    https://www.lydsy.com/JudgeOnline/problem.php?id=4405 这道题大概就是考场上想不出来,想出来也调不出来的题. 把每个桶拆成三个互相有边的点,每个球向 ...

  5. [UOJ171][WC2016]挑战NPC

    uoj luogu bzoj sol 你可以列一个表格. 一个框子里放球的数量 0 1 2 3 对"半空框子"数量的贡献 1 1 0 0 把一个框子拆三个点.两两之间连边. 会发现 ...

  6. bzoj 4405: [wc2016]挑战NPC【带花树】

    把每个筐子拆成3个,分别表示放0/1/2个,然后把这三个点两两连起来,每一个可以放在筐里的球都想这三个点连边. 这样可以发现,放0个球的时候,匹配数为1,放1个球的时候,匹配数为1,放2个球的时候,匹 ...

  7. 「WC2016」挑战NPC

    「WC2016」挑战NPC 解题思路 这个题建图非常厉害,带花树什么的只会口胡根本写不动,所以我写了机房某大佬教我的乱搞. 考虑把一个筐 \(x\) 拆成 \(x1,x2,x3\) 三个点,且这三个点 ...

  8. 【BZOJ4405】【WC2016】挑战NPC(带花树)

    [BZOJ4405][WC2016]挑战NPC(带花树) 题面 BZOJ 洛谷 Uoj Description 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个 ...

  9. UOJ171 【WC2016】挑战NPC

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

随机推荐

  1. svn 冲突Skipped ‘inm/inm/templates‘ -- Node remains in conflict

    svn在删除后,提交,更新操作后可能会报, svn update inm/inm -r 1586 Updating ‘inm/inm‘: Password: Skipped ‘inm/inm/temp ...

  2. java字段中初始化的规律与如何用静态成员函数调用非静态成员

    java字段中初始化的规律: 执行以下代码,出现的结果是什么? class InitializeBlockClass{ { field=200; } public int field=100; pub ...

  3. 2016级算法第一次练习赛-C.斐波那契进阶

    870 斐波那契进阶 题目链接:https://buaacoding.cn/problem/870/index 思路 通过读题就可以发现这不是一般的求斐波那契数列,所以用数组存下所有的答案是不现实的. ...

  4. SQL总结-----触发器

    概念 触发器是一种特殊类型的存储过程,不由用户直接调用.创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行. 触发器可以查询其他表,而且可以包含复杂的 SQL 语句. 它们主要用 ...

  5. 利用java实现一个简单的链表结构

    *博客搬家:初版发布于 2014/07/04 定义: 所谓链表就是指在某节点存储数据的过程中还要有一个属性用来指向下一个链表节点,这样的数据存储方式叫做链表 链表优缺点: 优点:易于存储和删除 缺点: ...

  6. SCTP

    流控制传输协议是为了替代UDP.TCP实现七号信令传输的. HS DPA  high speed download packet access. HS UPA ... 通信人 Orthogonal f ...

  7. 阿里云redisA迁移redisB迁移

    ./redis-port restore --input=./xxx.rdb --target=r-2zedc7c8e0557dsf4.redis.rds.aliyuncs.com:6379 --au ...

  8. C# 连接Oracle 11g 无需安装Oracle客户端

    1.首先到Oracle网站上下载ODAC 下载地址1:http://download.csdn.net/detail/easyboot/9456476 下载地址2:http://www.oracle. ...

  9. word-wrap:表示是否允许流浪器断句,word-break:表示怎样断句

    word-wrap: break-word的话,流浪器可以断句,但是是按单词形式断句. 而加上 word-break: break-all的话,单词内部也断句. "whiteSpace&qu ...

  10. vuex到底是什么?

    vuex到底是什么? 使用vue也有一段时间了,但是对vue的理解似乎还是停留在初始状态,究其原因,不得不说是自己没有深入进去,理解本质,导致开发效率低,永远停留在表面, 更坏的结果就是refresh ...