[HAOI2006]均分数据

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 3434  Solved: 1091
[Submit][Status][Discuss]

Description

已知N个正整数:A1、A2、……、An 。今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小。均方差公式如下:

,其中σ为均方差,是各组数据和的平均值,xi为第i组数据的数值和。

Input

第一行是两个整数,表示N,M的值(N是整数个数,M是要分成的组数)
第二行有N个整数,表示A1、A2、……、An。整数的范围是1--50。
(同一行的整数间用空格分开)

Output

这一行只包含一个数,表示最小均方差的值(保留小数点后两位数字)。

Sample Input

6 3
1 2 3 4 5 6

Sample Output

0.00

HINT

对于全部的数据,保证有K<=N <= 20,2<=K<=6

Source

[Submit][Status][Discuss]

HOME Back

以前也没怎么写过模拟退火,这道题让我知道了一些怎么写

退了10000次火,模拟退火主要靠感觉的吧,

写法也是相当奇怪的

当温度很高的时候,将随机出来的一个数,放入当前组里最小的一组,

当温度比较低的时候,就随机放在一组里,然后判断交换后答案是否更优,是的话就交换,不然随机交换。

 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath> #define N 10007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m;
int sum[N],a[N],belong[N];
double minans=1e30,ave; void SA()
{
memset(sum,,sizeof(sum));
for (int i=;i<=n;i++)
{
belong[i]=rand()%m+;
sum[belong[i]]+=a[i];
}
double ans=;
for (int i=;i<=m;i++)
ans+=(sum[i]-ave)*(sum[i]-ave);
double T=;
while(T>0.1)
{
T*=0.9;
int t=rand()%n+,x=belong[t],y;
if (T>) y=min_element(sum+,sum+m+)-sum;
else y=rand()%m+;
if (x==y) continue;
double tmp=ans;
ans-=(sum[x]-ave)*(sum[x]-ave);
ans-=(sum[y]-ave)*(sum[y]-ave);
sum[x]-=a[t],sum[y]+=a[t];
ans+=(sum[x]-ave)*(sum[x]-ave);
ans+=(sum[y]-ave)*(sum[y]-ave);
if (ans<=tmp) belong[t]=y;
else if (rand()%>T) sum[x]+=a[t],sum[y]-=a[t],ans=tmp;
else belong[t]=y;
}
if (ans<minans) minans=ans;
}
int main()
{
srand();
n=read(),m=read();
for (int i=;i<=n;i++)
a[i]=read(),ave+=a[i];
ave/=(double)m;
for (int i=;i<=;i++) SA();
printf("%.2lf\n",sqrt(minans/m));
}

bzoj2428 [HAOI2006]均分数据 模拟退火的更多相关文章

  1. BZOJ2428[HAOI2006]均分数据——模拟退火

    题目描述 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: ,其中σ为均方差,是各组数据和的平均值,xi为第i组数据的数值 ...

  2. bzoj2428: [HAOI2006]均分数据

    模拟退火.挺好理解的.然后res打成了ans一直WA一直WA...!!!一定要注意嗷嗷嗷一定要注意嗷嗷嗷一定要注意嗷嗷嗷. 然后我就一直卡一直卡...发现最少1800次的时候就可以出解了.然后我就去调 ...

  3. BZOJ2428 HAOI2006均分数据(模拟退火)

    显然可以状压dp.显然过不了. 考虑暴力模拟退火.每次随机改变一个数所属集合即可. 并不明白要怎么调参. #include<iostream> #include<cstdio> ...

  4. 洛谷P2503 [HAOI2006]均分数据(模拟退火)

    题目描述 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 输入输出格式 输入格式: 输入文件data.in包括: 第一行 ...

  5. HAOI2006 均分数据 [模拟退火]

    题目描述 已知N个正整数:A1.A2.--.An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 输入输出格式 输入格式: 输入文件data.in包括: 第一行 ...

  6. BZOJ 2428 JZYZOJ1533 : [HAOI2006]均分数据 模拟退火 随机化

    http://www.lydsy.com/JudgeOnline/problem.php?id=2428 http://172.20.6.3/Problem_Show.asp?id=1533 http ...

  7. P2503 [HAOI2006]均分数据

    P2503 [HAOI2006]均分数据 模拟退火+dp (不得不说,我今天欧气爆棚) 随机出1个数列,然后跑一遍dp统计 #include<iostream> #include<c ...

  8. 【BZOJ2428】均分数据(模拟退火)

    [BZOJ2428]均分数据(模拟退火) 题面 BZOJ 题解 先说说黄学长的做法: 当温度比较高的时候,贪心 每次随机一个数,把他放进当前和最少的那一组里面 温度足够低的时候就完全随机然后转移 这样 ...

  9. 洛谷 P2503 [HAOI2006]均分数据 随机化贪心

    洛谷P2503 [HAOI2006]均分数据(随机化贪心) 现在来看这个题就是水题,但模拟赛时想了1个小时贪心,推了一堆结论,最后发现贪心做 不了, 又想了半个小时dp 发现dp好像也做不了,在随机化 ...

随机推荐

  1. 关于mysql开元数据库的几个随想

    现在已经是凌晨了,昨天晚上写了我人生中的第一篇笔记,觉得没什么可写的,写了一个多小时都没写出什么,现在突然想写点东西了,这是一个比较有趣的问题,前两个月换了新工作,记得当初面试这份工作的时候面试到第三 ...

  2. sql月,年,统计报表sql报表

    select DevName as 设备名称, count(flux) as 流量数据个数, max(flux) as 流量最大值, min(flux) as 流量最小值, avg(flux) as ...

  3. Chameleon-mini简介

    ChameleonMini(变色龙)原德国大学在研究RFID安全时所设计的一块针对多频段多类型RFID模拟的硬件,其设计本身支持ISO14443和ISO15693标准协议,最简单直接的用法就是把获取到 ...

  4. ThinkPHP - 5 - 学习笔记(2015.4.15)

    ThinkPHP __construct()和__initialize() 1.__initialize()不是php类中的函数,php类的构造函数只有__construct().2.类的初始化:子类 ...

  5. 五:ResourceManager High Availability RM 高可用

    RM有单点失败的风险,但是可以做HA.  RMs HA通过master/standby这种结构实现,一个master是active的,其它standby是inactive的.可能通过命令行切换主备节点 ...

  6. 《剑指Offer》题一~题十

    一.赋值运算符函数 题目:如下为类型CMyString的声明,请为该类型添加赋值运算符函数. class CMyString { public: CMyString(char *pData = nul ...

  7. Thunder团队第六周 - Scrum会议6

    Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:邹双黛 工作照片: 邹双黛同学在拍照,所以不在照片内. 参会成员: 王航:http://www.cnblog ...

  8. Python学习之路4 - 文件操作&编码转换

    文件操作 文件操作大概分三步: 把文件打开. 操作文件. 把文件关上. 打开文件 打开文件用open()函数,打开成功后返回一个资源,具体语法如下. open(要打开的文件,打开方式,打开文件的格式, ...

  9. 无法启动mysql服务 错误1067:进程意外中止

    这个错误在前些周遇到过,没有解决,直接粗暴的卸载重装了,自己用的是wampserver集成环境,重装的后果是mysql里面的一些已有的数据库就没有了,有点小悲剧,不过幸好都是一些测试用的数据库,后面直 ...

  10. hadoop fs 部分命令详解

    1,Hadoop fs –fs [local | <file system URI>]:声明hadoop使用的文件系统,如果不声明的话,使用当前配置文件配置的,按如下顺序查找:hadoop ...